File size: 10,140 Bytes
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961ea1f
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1328e
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2f159
7245cc5
961ea1f
 
 
 
 
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2f159
 
7245cc5
6a2f159
 
 
6a1328e
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2f159
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2f159
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1328e
c1f2d8e
 
7245cc5
 
 
6a1328e
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961ea1f
7245cc5
961ea1f
 
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961ea1f
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2f159
 
 
 
 
 
7245cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from pathlib import Path
import io
import yaml

from PIL import Image, ImageCms
import torch
import numpy as np
from transformers import T5Tokenizer, T5EncoderModel
from safetensors.torch import load_file
import diffusers
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler
from diffusers.utils import check_min_version, export_to_video
from huggingface_hub import hf_hub_download

from controlnet_pipeline import ControlnetCogVideoXPipeline
from cogvideo_transformer import CogVideoXTransformer3DModel

from training.utils import save_frames_as_pngs
from training.helpers import get_conditioning

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")


def convert_to_srgb(img: Image):
    if 'icc_profile' in img.info:
        icc = img.info['icc_profile']
        src_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc))
        dst_profile = ImageCms.createProfile("sRGB")
        img = ImageCms.profileToProfile(img, src_profile, dst_profile, outputMode='RGB')
    else:
        img = img.convert("RGB")  # Assume sRGB
    return img


INTERVALS = {
    "present": {
        "in_start": 0, 
        "in_end": 16, 
        "out_start": 0, 
        "out_end": 16, 
        "center": 8, 
        "window_size": 16, 
        "mode": "1x", 
        "fps": 240
    },
    "past, present and future": {
        "in_start": 4, 
        "in_end": 12, 
        "out_start": 0, 
        "out_end": 16, 
        "center": 8, 
        "window_size": 16,
        "mode": "2x", 
        "fps": 240,
    },
}


def convert_to_batch(
    image, 
    interval_key="present", 
    image_size=(720, 1280),
):
    interval = INTERVALS[interval_key]

    inp_int, out_int, num_frames = get_conditioning(
        in_start=interval['in_start'],
        in_end=interval['in_end'],
        out_start=interval['out_start'],
        out_end=interval['out_end'],
        mode=interval['mode'],
        fps=interval['fps'],
    )

    blur_img_original = convert_to_srgb(image)
    H, W = blur_img_original.size

    blur_img = blur_img_original.resize((image_size[1], image_size[0])) # pil is width, height
    blur_img = torch.from_numpy(np.array(blur_img)[None]).permute(0, 3, 1, 2).contiguous().float()
    blur_img = blur_img / 127.5 - 1.0

    data = {
        "original_size": (H, W),
        'blur_img': blur_img,
        'caption': "",
        'input_interval': inp_int,
        'output_interval': out_int,
        'height': image_size[0],
        'width': image_size[1],
        'num_frames': num_frames,
    }
    return data


def load_model(args):
    with open(args.model_config_path) as f:
        model_config = yaml.safe_load(f)

    load_dtype = torch.float16
    transformer = CogVideoXTransformer3DModel.from_pretrained(
        args.pretrained_model_path, 
        subfolder="transformer",
        torch_dtype=load_dtype,
        revision=model_config["revision"],
        variant=model_config["variant"],
        low_cpu_mem_usage=False,
        attn_implementation="flash_attention_2",
    )
    weight_path = hf_hub_download(
        repo_id=args.blur2vid_hf_repo_path, 
        filename="cogvideox-outsidephotos/checkpoint/model.safetensors"
    )
    transformer.load_state_dict(load_file(weight_path))

    text_encoder = T5EncoderModel.from_pretrained(
        args.pretrained_model_path, 
        subfolder="text_encoder", 
        revision=model_config["revision"],
    )

    tokenizer = T5Tokenizer.from_pretrained(
        args.pretrained_model_path, 
        subfolder="tokenizer", 
        revision=model_config["revision"],
    )

    vae = AutoencoderKLCogVideoX.from_pretrained(
        args.pretrained_model_path, 
        subfolder="vae", 
        revision=model_config["revision"],
        variant=model_config["variant"],
    )

    scheduler = CogVideoXDPMScheduler.from_pretrained(
        args.pretrained_model_path, 
        subfolder="scheduler"
    )

    # Enable slicing or tiling if VRAM is low!
    vae.enable_slicing()
    vae.enable_tiling()

    # For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    # Somehow for HF Spaces we do need to keep them in full precision
    weight_dtype = torch.bfloat16  # torch.float32  # torch.bfloat16 

    text_encoder.to(dtype=weight_dtype)
    transformer.to(dtype=weight_dtype)
    vae.to(dtype=weight_dtype)  

    pipe = ControlnetCogVideoXPipeline.from_pretrained(
        args.pretrained_model_path,
        tokenizer=tokenizer,
        transformer=transformer,
        text_encoder=text_encoder,
        vae=vae,
        scheduler=scheduler,
        torch_dtype=weight_dtype,
    )
    
    scheduler_args = {}

    if "variance_type" in pipe.scheduler.config:
        variance_type = pipe.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

    pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)

    return pipe, model_config


def inference_on_image(pipe, image, interval_key, model_config, args):
    # If passed along, set the training seed now.
    if args.seed is not None:
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)

    # run inference
    generator = torch.Generator(device=args.device).manual_seed(args.seed) if args.seed else None

    with torch.autocast(device_type=args.device, dtype=torch.bfloat16, enabled=True):
        batch = convert_to_batch(image, interval_key, (args.video_height, args.video_width))

        frame = batch["blur_img"].permute(0, 2, 3, 1).cpu().numpy()
        frame = (frame + 1.0) * 127.5
        frame = frame.astype(np.uint8)
        pipeline_args = {
            "prompt": "",
            "negative_prompt": "",
            "image": frame,
            "input_intervals": torch.stack([batch["input_interval"]]),
            "output_intervals": torch.stack([batch["output_interval"]]),
            "guidance_scale": model_config["guidance_scale"],
            "use_dynamic_cfg": model_config["use_dynamic_cfg"],
            "height": batch["height"],
            "width": batch["width"],
            "num_frames": torch.tensor([[model_config["max_num_frames"]]]), # torch.tensor([[batch["num_frames"]]]),
            "num_inference_steps": args.num_inference_steps,
        }

        input_image = frame

        num_frames = batch["num_frames"]  # this is the actual number of frames, the video generation is padded by one frame

        print(f"Running inference for interval {interval_key}...")
        video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]

        video = video[0:num_frames]

    return input_image, video


def main(args):
    output_path = Path(args.output_path)
    output_path.mkdir(exist_ok=True)

    image_path = Path(args.image_path)

    is_dir = image_path.is_dir()

    if is_dir:
        image_paths = sorted(list(image_path.glob("*.*")))
    else:
        image_paths = [image_path]

    pipe, model_config = load_model(args)
  
    pipe = pipe.to(args.device)

    for image_path in image_paths:
        image = Image.open(image_path)

        processed_image, video = inference_on_image(pipe, image, "past, present and future", model_config, args)

        vid_output_path = output_path / f"{image_path.stem}.mp4"
        export_to_video(video, vid_output_path, fps=20)
        
        # save input image as well
        inpug_image_output_path = output_path / f"{image_path.stem}_input.png"
        Image.fromarray(processed_image[0]).save(inpug_image_output_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--image_path",
        type=str,
        required=True,
        help="Path to image input or directory containing input images",
    )
    parser.add_argument(
        "--blur2vid_hf_repo_path",
        type=str,
        default="tedlasai/blur2vid",
        help="hf repo containing the weight files",
    )
    parser.add_argument(
        "--pretrained_model_path",
        type=str,
        default="THUDM/CogVideoX-2b",
        help="repo id or path for pretrained CogVideoX model",
    )
    parser.add_argument(
        "--model_config_path",
        type=str,
        default="training/configs/outsidephotos.yaml",
        help="path to model config yaml",
    )
    parser.add_argument(
        "--output_path",
        type=str,
        default="output/",
        help="path to output",
    )
    parser.add_argument(
        "--video_width",
        type=int,
        default=1280,
        help="video resolution width",
    )
    parser.add_argument(
        "--video_height",
        type=int,
        default=720,
        help="video resolution height",
    )
    parser.add_argument(
        "--num_inference_steps",
        type=int,
        default=50,
        help="number of DDIM steps",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=None,
        help="random generator seed",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cuda",
        help="inference device",
    )
    args = parser.parse_args()
    main(args)

# python inference.py --image_path assets/dummy_image.png --output_path output/