pr/1 (#1)
Browse files- setup processing & initial classifier (d1276d6fedbf2879914e20609918aae06c884daf)
- .gitignore +3 -1
- models/audio_classification_baseline.pkl +3 -0
- tasks/audio.py +46 -22
.gitignore
CHANGED
|
@@ -6,7 +6,9 @@ __pycache__/
|
|
| 6 |
.env
|
| 7 |
.ipynb_checkpoints
|
| 8 |
.vscode/
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
eval-queue/
|
| 11 |
eval-results/
|
| 12 |
eval-queue-bk/
|
|
|
|
| 6 |
.env
|
| 7 |
.ipynb_checkpoints
|
| 8 |
.vscode/
|
| 9 |
+
notebooks
|
| 10 |
+
Pipfile
|
| 11 |
+
Pipfile.lock
|
| 12 |
eval-queue/
|
| 13 |
eval-results/
|
| 14 |
eval-queue-bk/
|
models/audio_classification_baseline.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a27a9a671a920660995bc08b255e17449427f018402ceec81710a0ae93cb612
|
| 3 |
+
size 36073945
|
tasks/audio.py
CHANGED
|
@@ -4,9 +4,12 @@ from datasets import load_dataset
|
|
| 4 |
from sklearn.metrics import accuracy_score
|
| 5 |
import random
|
| 6 |
import os
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
from
|
| 9 |
-
from
|
| 10 |
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
load_dotenv()
|
|
@@ -17,13 +20,12 @@ DESCRIPTION = "Random Baseline"
|
|
| 17 |
ROUTE = "/audio"
|
| 18 |
|
| 19 |
|
| 20 |
-
|
| 21 |
@router.post(ROUTE, tags=["Audio Task"],
|
| 22 |
description=DESCRIPTION)
|
| 23 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 24 |
"""
|
| 25 |
Evaluate audio classification for rainforest sound detection.
|
| 26 |
-
|
| 27 |
Current Model: Random Baseline
|
| 28 |
- Makes random predictions from the label space (0-1)
|
| 29 |
- Used as a baseline for comparison
|
|
@@ -38,35 +40,58 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
| 38 |
}
|
| 39 |
# Load and prepare the dataset
|
| 40 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 41 |
-
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
| 42 |
-
|
| 43 |
# Split dataset
|
| 44 |
-
train_test = dataset["train"].train_test_split(
|
|
|
|
| 45 |
test_dataset = train_test["test"]
|
| 46 |
-
|
| 47 |
# Start tracking emissions
|
| 48 |
tracker.start()
|
| 49 |
tracker.start_task("inference")
|
| 50 |
-
|
| 51 |
-
|
| 52 |
# YOUR MODEL INFERENCE CODE HERE
|
| 53 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
true_labels = test_dataset["label"]
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
#--------------------------------------------------------------------------------------------
|
| 61 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 62 |
-
|
| 63 |
-
|
| 64 |
# Stop tracking emissions
|
| 65 |
emissions_data = tracker.stop_task()
|
| 66 |
-
|
| 67 |
# Calculate accuracy
|
| 68 |
accuracy = accuracy_score(true_labels, predictions)
|
| 69 |
-
|
| 70 |
# Prepare results dictionary
|
| 71 |
results = {
|
| 72 |
"username": username,
|
|
@@ -84,5 +109,4 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
| 84 |
"test_seed": request.test_seed
|
| 85 |
}
|
| 86 |
}
|
| 87 |
-
|
| 88 |
-
return results
|
|
|
|
| 4 |
from sklearn.metrics import accuracy_score
|
| 5 |
import random
|
| 6 |
import os
|
| 7 |
+
import joblib
|
| 8 |
+
import librosa
|
| 9 |
+
import numpy as np
|
| 10 |
|
| 11 |
+
from utils.evaluation import AudioEvaluationRequest
|
| 12 |
+
from utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 13 |
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
load_dotenv()
|
|
|
|
| 20 |
ROUTE = "/audio"
|
| 21 |
|
| 22 |
|
|
|
|
| 23 |
@router.post(ROUTE, tags=["Audio Task"],
|
| 24 |
description=DESCRIPTION)
|
| 25 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
| 26 |
"""
|
| 27 |
Evaluate audio classification for rainforest sound detection.
|
| 28 |
+
|
| 29 |
Current Model: Random Baseline
|
| 30 |
- Makes random predictions from the label space (0-1)
|
| 31 |
- Used as a baseline for comparison
|
|
|
|
| 40 |
}
|
| 41 |
# Load and prepare the dataset
|
| 42 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
| 43 |
+
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
| 44 |
+
|
| 45 |
# Split dataset
|
| 46 |
+
train_test = dataset["train"].train_test_split(
|
| 47 |
+
test_size=request.test_size, seed=request.test_seed)
|
| 48 |
test_dataset = train_test["test"]
|
| 49 |
+
|
| 50 |
# Start tracking emissions
|
| 51 |
tracker.start()
|
| 52 |
tracker.start_task("inference")
|
| 53 |
+
|
| 54 |
+
# --------------------------------------------------------------------------------------------
|
| 55 |
# YOUR MODEL INFERENCE CODE HERE
|
| 56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 57 |
+
# --------------------------------------------------------------------------------------------
|
| 58 |
+
# data formatting
|
| 59 |
+
|
| 60 |
+
def preprocess(dataset):
|
| 61 |
+
features = []
|
| 62 |
+
for row in dataset:
|
| 63 |
+
# Load the audio file and resample it
|
| 64 |
+
target_sr = 25000
|
| 65 |
+
audio = row['audio']['array']
|
| 66 |
+
audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr)
|
| 67 |
+
|
| 68 |
+
# Extract MFCC features
|
| 69 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=40)
|
| 70 |
+
mfccs_scaled = np.mean(mfccs.T, axis=0)
|
| 71 |
+
|
| 72 |
+
# Append features and labels
|
| 73 |
+
features.append(mfccs_scaled)
|
| 74 |
+
|
| 75 |
+
return np.array(features)
|
| 76 |
+
|
| 77 |
+
X_test = preprocess(test_dataset)
|
| 78 |
+
|
| 79 |
+
classification_model = joblib.load(
|
| 80 |
+
"../models/audio_classification_baseline.pkl")
|
| 81 |
+
|
| 82 |
+
predictions = classification_model.predict(X_test)
|
| 83 |
true_labels = test_dataset["label"]
|
| 84 |
+
|
| 85 |
+
# --------------------------------------------------------------------------------------------
|
|
|
|
| 86 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 87 |
+
# --------------------------------------------------------------------------------------------
|
| 88 |
+
|
| 89 |
# Stop tracking emissions
|
| 90 |
emissions_data = tracker.stop_task()
|
| 91 |
+
|
| 92 |
# Calculate accuracy
|
| 93 |
accuracy = accuracy_score(true_labels, predictions)
|
| 94 |
+
|
| 95 |
# Prepare results dictionary
|
| 96 |
results = {
|
| 97 |
"username": username,
|
|
|
|
| 109 |
"test_seed": request.test_seed
|
| 110 |
}
|
| 111 |
}
|
| 112 |
+
return results
|
|
|