add local test for comparison
Browse files- local_test.py +84 -0
local_test.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
num_steps = 1000
|
| 6 |
+
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
|
| 7 |
+
clip_model="ViT-L/14"
|
| 8 |
+
clip_model_id ="laion5B-L-14"
|
| 9 |
+
|
| 10 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
print ("using device", device)
|
| 12 |
+
|
| 13 |
+
from clip_retrieval.load_clip import load_clip, get_tokenizer
|
| 14 |
+
# from clip_retrieval.clip_client import ClipClient, Modality
|
| 15 |
+
model, preprocess = load_clip(clip_model, use_jit=True, device=device)
|
| 16 |
+
tokenizer = get_tokenizer(clip_model)
|
| 17 |
+
|
| 18 |
+
def test_text(prompt):
|
| 19 |
+
text = tokenizer([prompt]).to(device)
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
prompt_embededdings = model.encode_text(text)
|
| 22 |
+
prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True)
|
| 23 |
+
return(prompt_embededdings)
|
| 24 |
+
|
| 25 |
+
def test_image(input_im):
|
| 26 |
+
input_im = Image.fromarray(input_im)
|
| 27 |
+
prepro = preprocess(input_im).unsqueeze(0).to(device)
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
image_embeddings = model.encode_image(prepro)
|
| 30 |
+
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True)
|
| 31 |
+
return(image_embeddings)
|
| 32 |
+
|
| 33 |
+
def test_preprocessed_image(prepro):
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
image_embeddings = model.encode_image(prepro)
|
| 36 |
+
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True)
|
| 37 |
+
return(image_embeddings)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# performance test for text
|
| 41 |
+
start = time.time()
|
| 42 |
+
for i in range(num_steps):
|
| 43 |
+
test_text("todo")
|
| 44 |
+
end = time.time()
|
| 45 |
+
average_time_seconds = (end - start) / num_steps
|
| 46 |
+
average_time_seconds = average_time_seconds if average_time_seconds > 0 else 0.0000001
|
| 47 |
+
print("Average time for text: ", average_time_seconds, "s")
|
| 48 |
+
print("Average time for text: ", average_time_seconds * 1000, "ms")
|
| 49 |
+
print("Number of predictions per second for text: ", 1 / average_time_seconds)
|
| 50 |
+
|
| 51 |
+
# download image from url
|
| 52 |
+
import requests
|
| 53 |
+
from PIL import Image
|
| 54 |
+
from io import BytesIO
|
| 55 |
+
response = requests.get(test_image_url)
|
| 56 |
+
input_image = Image.open(BytesIO(response.content))
|
| 57 |
+
input_image = input_image.convert('RGB')
|
| 58 |
+
# convert image to numpy array
|
| 59 |
+
input_image = np.array(input_image)
|
| 60 |
+
|
| 61 |
+
# performance test for image
|
| 62 |
+
start = time.time()
|
| 63 |
+
for i in range(num_steps):
|
| 64 |
+
test_image(input_image)
|
| 65 |
+
end = time.time()
|
| 66 |
+
average_time_seconds = (end - start) / num_steps
|
| 67 |
+
print("Average time for image: ", average_time_seconds, "s")
|
| 68 |
+
print("Average time for image: ", average_time_seconds * 1000, "ms")
|
| 69 |
+
print("Number of predictions per second for image: ", 1 / average_time_seconds)
|
| 70 |
+
|
| 71 |
+
# performance test for preprocessed image
|
| 72 |
+
input_im = Image.fromarray(input_image)
|
| 73 |
+
prepro = preprocess(input_im).unsqueeze(0).to(device)
|
| 74 |
+
|
| 75 |
+
start = time.time()
|
| 76 |
+
for i in range(num_steps):
|
| 77 |
+
test_preprocessed_image(prepro)
|
| 78 |
+
end = time.time()
|
| 79 |
+
average_time_seconds = (end - start) / num_steps
|
| 80 |
+
print("Average time for preprocessed image: ", average_time_seconds, "s")
|
| 81 |
+
print("Average time for preprocessed image: ", average_time_seconds * 1000, "ms")
|
| 82 |
+
print("Number of predictions per second for preprocessed image: ", 1 / average_time_seconds)
|
| 83 |
+
|
| 84 |
+
|