Spaces:
Build error
Build error
| import cv2 | |
| import mediapipe as mp | |
| import numpy as np | |
| import gradio as gr | |
| from collections import deque | |
| mp_pose = mp.solutions.pose | |
| pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) | |
| mp_drawing = mp.solutions.drawing_utils | |
| def calculate_angle(a, b, c): | |
| a, b, c = np.array(a), np.array(b), np.array(c) | |
| radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0]) | |
| angle = np.abs(np.degrees(radians)) | |
| return angle if angle <= 180 else 360 - angle | |
| def check_vup_feedback(landmarks, angle_buffer): | |
| left_shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x, | |
| landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y] | |
| right_shoulder = [landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x, | |
| landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y] | |
| mid_shoulder = [(left_shoulder[0] + right_shoulder[0]) / 2, | |
| (left_shoulder[1] + right_shoulder[1]) / 2] | |
| left_hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x, | |
| landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y] | |
| right_hip = [landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x, | |
| landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y] | |
| mid_hip = [(left_hip[0] + right_hip[0]) / 2, | |
| (left_hip[1] + right_hip[1]) / 2] | |
| left_knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x, | |
| landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y] | |
| right_knee = [landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].x, | |
| landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y] | |
| mid_knee = [(left_knee[0] + right_knee[0]) / 2, | |
| (left_knee[1] + right_knee[1]) / 2] | |
| angle = calculate_angle(mid_shoulder, mid_hip, mid_knee) | |
| angle_buffer.append(angle) | |
| smooth_angle = np.mean(angle_buffer) | |
| accuracy = max(0, min(100, (1 - abs(smooth_angle - 90) / 30) * 100)) | |
| feedback = "Correct V-up" if smooth_angle < 120 else "Incorrect V-up - Bring your upper body and legs closer" | |
| return feedback, int(accuracy), smooth_angle | |
| def draw_info(image, accuracy, feedback, smooth_angle): | |
| bar_x, bar_y = 50, image.shape[0] - 70 | |
| bar_width, bar_height = 200, 20 | |
| fill_width = int((accuracy / 100) * bar_width) | |
| color = (0, 255, 0) if accuracy >= 80 else (0, 0, 255) if accuracy < 50 else (0, 255, 255) | |
| cv2.rectangle(image, (bar_x, bar_y), (bar_x + bar_width, bar_y + bar_height), (200,200,200), 2) | |
| cv2.rectangle(image, (bar_x, bar_y), (bar_x + fill_width, bar_y + bar_height), color, -1) | |
| cv2.putText(image, f"Accuracy: {accuracy}%", (bar_x, bar_y-10), | |
| cv2.FONT_HERSHEY_DUPLEX, 0.6, (255,255,255), 2) | |
| cv2.putText(image, f"Angle: {int(smooth_angle)}", (bar_x, bar_y-40), | |
| cv2.FONT_HERSHEY_DUPLEX, 0.8, (255,255,0), 2) | |
| text_color = (0, 255, 0) if "Correct" in feedback else (0, 0, 255) | |
| cv2.putText(image, feedback, (50, 50), | |
| cv2.FONT_HERSHEY_COMPLEX, 1, text_color, 3) | |
| def analyze_vups(video_path): | |
| angle_buffer = deque(maxlen=5) | |
| cap = cv2.VideoCapture(video_path) | |
| frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30 | |
| output_video = "output_vups.mp4" | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(output_video, fourcc, fps, (frame_width, frame_height)) | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| results = pose.process(image) | |
| image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| if results.pose_landmarks: | |
| mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) | |
| landmarks = results.pose_landmarks.landmark | |
| feedback, accuracy, smooth_angle = check_vup_feedback(landmarks, angle_buffer) | |
| draw_info(image, accuracy, feedback, smooth_angle) | |
| # Optionally, draw a reference line at mid-hip | |
| left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value] | |
| right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value] | |
| mid_hip_x = int((left_hip.x + right_hip.x) / 2 * frame_width) | |
| mid_hip_y = int((left_hip.y + right_hip.y) / 2 * frame_height) | |
| cv2.line(image, (mid_hip_x - 50, mid_hip_y), (mid_hip_x + 50, mid_hip_y), (255,255,255), 2) | |
| out.write(image) | |
| cap.release() | |
| out.release() | |
| return output_video | |
| gr.Interface( | |
| fn=analyze_vups, | |
| inputs=gr.Video(), | |
| outputs=gr.Video(), | |
| title="V-ups Form Analyzer", | |
| description="Upload a video of your V-ups and receive form feedback!" | |
| ).launch() | |