Upload folder using huggingface_hub
Browse files- README.md +24 -4
- __pycache__/app.cpython-312.pyc +0 -0
- app.py +320 -0
- requirements.txt +3 -0
README.md
CHANGED
|
@@ -1,12 +1,32 @@
|
|
| 1 |
---
|
| 2 |
title: VizAnnot
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: VizAnnot
|
| 3 |
+
emoji: 🔬
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
datasets:
|
| 12 |
+
- rntc/biomed-fr-pancreas-annotations
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Pancreas Cancer Clinical Report Annotations Explorer
|
| 16 |
+
|
| 17 |
+
This Gradio app allows you to explore annotations extracted from synthetic French clinical reports about pancreas cancer.
|
| 18 |
+
|
| 19 |
+
## Features
|
| 20 |
+
|
| 21 |
+
- **Highlighted text view**: Clinical reports with colored spans showing where information was extracted
|
| 22 |
+
- **Hover tooltips**: Hover over highlighted spans to see the variable name and extracted value
|
| 23 |
+
- **Annotations table**: Complete table of all extracted variables with values and source spans
|
| 24 |
+
- **Search**: Search through clinical reports by text content
|
| 25 |
+
|
| 26 |
+
## Dataset
|
| 27 |
+
|
| 28 |
+
The app loads data from [rntc/biomed-fr-pancreas-annotations](https://huggingface.co/datasets/rntc/biomed-fr-pancreas-annotations).
|
| 29 |
+
|
| 30 |
+
## Usage
|
| 31 |
+
|
| 32 |
+
Use the slider to navigate between samples, or use the search box to find specific content.
|
__pycache__/app.cpython-312.pyc
ADDED
|
Binary file (17 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio app to explore pancreas or lymphome clinical report annotations.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
from functools import partial
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
|
| 12 |
+
MIN_ANNOTATIONS = 10
|
| 13 |
+
PANCREAS_REPO_ID = os.getenv("PANCREAS_REPO_ID", "rntc/biomed-fr-pancreas-annotations")
|
| 14 |
+
LYMPHOME_REPO_ID = os.getenv("LYMPHOME_REPO_ID", "rntc/biomed-fr-lymphome-annotations")
|
| 15 |
+
LYMPHOME_LOCAL_JSONL = (
|
| 16 |
+
Path(__file__).resolve().parent.parent
|
| 17 |
+
/ "Qwen--Qwen3-235B-A22B-Instruct-2507-FP8-4-lymphome-annotation-20251201_153807.jsonl"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# Colors for highlighting
|
| 21 |
+
COLORS = [
|
| 22 |
+
"#FFEB3B",
|
| 23 |
+
"#4CAF50",
|
| 24 |
+
"#2196F3",
|
| 25 |
+
"#FF9800",
|
| 26 |
+
"#E91E63",
|
| 27 |
+
"#9C27B0",
|
| 28 |
+
"#00BCD4",
|
| 29 |
+
"#8BC34A",
|
| 30 |
+
"#FF5722",
|
| 31 |
+
"#607D8B",
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def count_real_annotations(annotation):
|
| 36 |
+
"""Count real annotations (excluding 'not found' placeholders)."""
|
| 37 |
+
count = 0
|
| 38 |
+
for var_data in annotation.values():
|
| 39 |
+
if var_data and isinstance(var_data, dict):
|
| 40 |
+
value = var_data.get("value")
|
| 41 |
+
span = var_data.get("span", "")
|
| 42 |
+
if value:
|
| 43 |
+
if span and "pas de mention" in span.lower():
|
| 44 |
+
continue
|
| 45 |
+
if "not performed" in str(value).lower():
|
| 46 |
+
continue
|
| 47 |
+
count += 1
|
| 48 |
+
return count
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def escape_html(text):
|
| 52 |
+
if not text:
|
| 53 |
+
return ""
|
| 54 |
+
return str(text).replace("&", "&").replace("<", "<").replace(">", ">")
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def highlight_text(cr_text, annotation):
|
| 58 |
+
"""Highlight spans in CR text."""
|
| 59 |
+
if not cr_text or not annotation:
|
| 60 |
+
return f"<pre style='white-space:pre-wrap;'>{escape_html(cr_text)}</pre>"
|
| 61 |
+
|
| 62 |
+
# Collect valid spans (that exist in text)
|
| 63 |
+
spans = []
|
| 64 |
+
for var_name, var_data in annotation.items():
|
| 65 |
+
if var_data and isinstance(var_data, dict):
|
| 66 |
+
span = var_data.get("span")
|
| 67 |
+
value = var_data.get("value")
|
| 68 |
+
if span and value and span in cr_text:
|
| 69 |
+
spans.append(
|
| 70 |
+
{
|
| 71 |
+
"text": span,
|
| 72 |
+
"start": cr_text.find(span),
|
| 73 |
+
"var": var_name.replace("_", " ").title(),
|
| 74 |
+
"value": str(value),
|
| 75 |
+
}
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
if not spans:
|
| 79 |
+
return f"<pre style='white-space:pre-wrap;'>{escape_html(cr_text)}</pre>"
|
| 80 |
+
|
| 81 |
+
# Sort by position and remove overlaps
|
| 82 |
+
spans.sort(key=lambda x: x["start"])
|
| 83 |
+
filtered = []
|
| 84 |
+
for s in spans:
|
| 85 |
+
s["end"] = s["start"] + len(s["text"])
|
| 86 |
+
if not filtered or s["start"] >= filtered[-1]["end"]:
|
| 87 |
+
filtered.append(s)
|
| 88 |
+
|
| 89 |
+
# Build HTML
|
| 90 |
+
html = []
|
| 91 |
+
pos = 0
|
| 92 |
+
color_map = {}
|
| 93 |
+
color_idx = 0
|
| 94 |
+
|
| 95 |
+
for s in filtered:
|
| 96 |
+
if s["start"] > pos:
|
| 97 |
+
html.append(escape_html(cr_text[pos : s["start"]]))
|
| 98 |
+
|
| 99 |
+
if s["var"] not in color_map:
|
| 100 |
+
color_map[s["var"]] = COLORS[color_idx % len(COLORS)]
|
| 101 |
+
color_idx += 1
|
| 102 |
+
|
| 103 |
+
color = color_map[s["var"]]
|
| 104 |
+
html.append(
|
| 105 |
+
f'<mark style="background:{color};padding:1px 3px;border-radius:3px;" '
|
| 106 |
+
f'title="{escape_html(s["var"])}: {escape_html(s["value"])}">'
|
| 107 |
+
f'{escape_html(s["text"])}</mark>'
|
| 108 |
+
)
|
| 109 |
+
pos = s["end"]
|
| 110 |
+
|
| 111 |
+
if pos < len(cr_text):
|
| 112 |
+
html.append(escape_html(cr_text[pos:]))
|
| 113 |
+
|
| 114 |
+
return f"<pre style='white-space:pre-wrap;line-height:1.6;'>{''.join(html)}</pre>"
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def format_table(annotation):
|
| 118 |
+
"""Format annotations as HTML table."""
|
| 119 |
+
if not annotation:
|
| 120 |
+
return "<p>No annotations</p>"
|
| 121 |
+
|
| 122 |
+
rows = []
|
| 123 |
+
for var_name, var_data in annotation.items():
|
| 124 |
+
if var_data and isinstance(var_data, dict):
|
| 125 |
+
value = var_data.get("value")
|
| 126 |
+
span = var_data.get("span", "")
|
| 127 |
+
|
| 128 |
+
var_label = var_name.replace("_", " ").title()
|
| 129 |
+
|
| 130 |
+
if value:
|
| 131 |
+
if span and "pas de mention" in span.lower():
|
| 132 |
+
display_value = "/"
|
| 133 |
+
display_span = ""
|
| 134 |
+
elif "not performed" in str(value).lower():
|
| 135 |
+
display_value = "/"
|
| 136 |
+
display_span = ""
|
| 137 |
+
else:
|
| 138 |
+
display_value = str(value)
|
| 139 |
+
display_span = span[:60] + "..." if span and len(span) > 60 else (span or "")
|
| 140 |
+
else:
|
| 141 |
+
display_value = "/"
|
| 142 |
+
display_span = ""
|
| 143 |
+
|
| 144 |
+
rows.append(
|
| 145 |
+
f"""<tr>
|
| 146 |
+
<td style="padding:6px 10px;border-bottom:1px solid #ddd;font-weight:500;">{escape_html(var_label)}</td>
|
| 147 |
+
<td style="padding:6px 10px;border-bottom:1px solid #ddd;color:#1565C0;">{escape_html(display_value)}</td>
|
| 148 |
+
<td style="padding:6px 10px;border-bottom:1px solid #ddd;color:#666;font-size:12px;font-style:italic;">{escape_html(display_span)}</td>
|
| 149 |
+
</tr>"""
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
return f"""<table style="width:100%;border-collapse:collapse;font-size:13px;">
|
| 153 |
+
<thead><tr style="background:#f5f5f5;">
|
| 154 |
+
<th style="padding:8px 10px;text-align:left;border-bottom:2px solid #ddd;">Variable</th>
|
| 155 |
+
<th style="padding:8px 10px;text-align:left;border-bottom:2px solid #ddd;">Value</th>
|
| 156 |
+
<th style="padding:8px 10px;text-align:left;border-bottom:2px solid #ddd;">Source</th>
|
| 157 |
+
</tr></thead>
|
| 158 |
+
<tbody>{"".join(rows)}</tbody>
|
| 159 |
+
</table>"""
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def load_pancreas_dataset():
|
| 163 |
+
print(f"Loading pancreas dataset from {PANCREAS_REPO_ID}...")
|
| 164 |
+
dataset = load_dataset(PANCREAS_REPO_ID, split="train")
|
| 165 |
+
print(f"Loaded {len(dataset)} pancreas samples")
|
| 166 |
+
return dataset
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def load_lymphome_dataset():
|
| 170 |
+
print(f"Loading lymphome dataset from {LYMPHOME_REPO_ID} (Hub)...")
|
| 171 |
+
try:
|
| 172 |
+
dataset = load_dataset(LYMPHOME_REPO_ID, split="train")
|
| 173 |
+
print(f"Loaded {len(dataset)} lymphome samples from Hub")
|
| 174 |
+
return dataset
|
| 175 |
+
except Exception as exc: # noqa: BLE001 (we want to surface any failure)
|
| 176 |
+
print(f"Failed to load lymphome dataset from Hub: {exc}")
|
| 177 |
+
if LYMPHOME_LOCAL_JSONL.exists():
|
| 178 |
+
print(f"Falling back to local lymphome JSONL at {LYMPHOME_LOCAL_JSONL}")
|
| 179 |
+
dataset = load_dataset("json", data_files=str(LYMPHOME_LOCAL_JSONL), split="train")
|
| 180 |
+
print(f"Loaded {len(dataset)} lymphome samples from local file")
|
| 181 |
+
return dataset
|
| 182 |
+
raise
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def filter_indices(dataset, min_annotations):
|
| 186 |
+
return [
|
| 187 |
+
i
|
| 188 |
+
for i, sample in enumerate(dataset)
|
| 189 |
+
if count_real_annotations(sample.get("annotation", {})) >= min_annotations
|
| 190 |
+
]
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def prepare_source(key, label, loader, min_annotations):
|
| 194 |
+
"""Load a dataset source and precompute filtered indices."""
|
| 195 |
+
try:
|
| 196 |
+
dataset = loader()
|
| 197 |
+
filtered = filter_indices(dataset, min_annotations)
|
| 198 |
+
print(f"{label}: filtered to {len(filtered)} samples with >= {min_annotations} annotations")
|
| 199 |
+
return {
|
| 200 |
+
"label": label,
|
| 201 |
+
"dataset": dataset,
|
| 202 |
+
"filtered_indices": filtered,
|
| 203 |
+
"min_annotations": min_annotations,
|
| 204 |
+
"error": None,
|
| 205 |
+
}
|
| 206 |
+
except Exception as exc: # noqa: BLE001 (we want to surface any failure)
|
| 207 |
+
print(f"Failed to load {label}: {exc}")
|
| 208 |
+
return {
|
| 209 |
+
"label": label,
|
| 210 |
+
"dataset": None,
|
| 211 |
+
"filtered_indices": [],
|
| 212 |
+
"min_annotations": min_annotations,
|
| 213 |
+
"error": str(exc),
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
SOURCES = {
|
| 218 |
+
"pancreas": prepare_source("pancreas", "Pancréas", load_pancreas_dataset, MIN_ANNOTATIONS),
|
| 219 |
+
"lymphome": prepare_source("lymphome", "Lymphome", load_lymphome_dataset, MIN_ANNOTATIONS),
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def display_sample_for_source(source_key, slider_idx):
|
| 224 |
+
"""Display a sample for a given dataset source."""
|
| 225 |
+
source = SOURCES[source_key]
|
| 226 |
+
|
| 227 |
+
if source["error"]:
|
| 228 |
+
message = f"Dataset unavailable: {source['error']}"
|
| 229 |
+
return message, message, message
|
| 230 |
+
|
| 231 |
+
if not source["filtered_indices"]:
|
| 232 |
+
message = f"No samples with >= {source['min_annotations']} annotations."
|
| 233 |
+
return message, message, message
|
| 234 |
+
|
| 235 |
+
slider_idx = int(slider_idx)
|
| 236 |
+
if slider_idx < 0 or slider_idx >= len(source["filtered_indices"]):
|
| 237 |
+
return "Invalid", "Invalid", "Invalid"
|
| 238 |
+
|
| 239 |
+
real_idx = source["filtered_indices"][slider_idx]
|
| 240 |
+
sample = source["dataset"][real_idx]
|
| 241 |
+
|
| 242 |
+
original = sample.get("original_text", "")
|
| 243 |
+
cr = sample.get("CR", "")
|
| 244 |
+
annotation = sample.get("annotation", {})
|
| 245 |
+
|
| 246 |
+
n_annotations = count_real_annotations(annotation)
|
| 247 |
+
|
| 248 |
+
original_html = f"<pre style='white-space:pre-wrap;line-height:1.6;'>{escape_html(original)}</pre>"
|
| 249 |
+
cr_html = (
|
| 250 |
+
f"<p><b>Sample #{real_idx}</b> — {n_annotations} annotations</p>"
|
| 251 |
+
+ highlight_text(cr, annotation)
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
return original_html, cr_html, format_table(annotation)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def build_tab(source_key):
|
| 258 |
+
source = SOURCES[source_key]
|
| 259 |
+
label = source["label"]
|
| 260 |
+
|
| 261 |
+
with gr.TabItem(label):
|
| 262 |
+
if source["error"]:
|
| 263 |
+
gr.Markdown(f"⚠️ Could not load {label} dataset: {escape_html(source['error'])}")
|
| 264 |
+
return
|
| 265 |
+
|
| 266 |
+
if not source["filtered_indices"]:
|
| 267 |
+
gr.Markdown(f"⚠️ No samples with >= {source['min_annotations']} annotations.")
|
| 268 |
+
return
|
| 269 |
+
|
| 270 |
+
gr.Markdown(
|
| 271 |
+
f"Showing {len(source['filtered_indices'])} samples with >= "
|
| 272 |
+
f"{source['min_annotations']} annotations. Hover over highlights to see values."
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
with gr.Row():
|
| 276 |
+
slider = gr.Slider(
|
| 277 |
+
0,
|
| 278 |
+
len(source["filtered_indices"]) - 1,
|
| 279 |
+
value=0,
|
| 280 |
+
step=1,
|
| 281 |
+
label="Sample",
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with gr.Row():
|
| 285 |
+
with gr.Column():
|
| 286 |
+
gr.Markdown("### Original (English)")
|
| 287 |
+
original_html = gr.HTML()
|
| 288 |
+
with gr.Column():
|
| 289 |
+
gr.Markdown("### Generated CR (French)")
|
| 290 |
+
cr_html = gr.HTML()
|
| 291 |
+
with gr.Column():
|
| 292 |
+
gr.Markdown("### Extracted Variables")
|
| 293 |
+
table_html = gr.HTML()
|
| 294 |
+
|
| 295 |
+
slider.change(
|
| 296 |
+
fn=partial(display_sample_for_source, source_key),
|
| 297 |
+
inputs=[slider],
|
| 298 |
+
outputs=[original_html, cr_html, table_html],
|
| 299 |
+
)
|
| 300 |
+
demo.load(
|
| 301 |
+
fn=partial(display_sample_for_source, source_key),
|
| 302 |
+
inputs=[slider],
|
| 303 |
+
outputs=[original_html, cr_html, table_html],
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# Build UI
|
| 308 |
+
with gr.Blocks(title="Clinical Annotations Explorer", theme=gr.themes.Base()) as demo:
|
| 309 |
+
gr.Markdown("# 🔬 Clinical Annotation Explorer")
|
| 310 |
+
gr.Markdown(
|
| 311 |
+
"Use the tabs below to switch between pancreas and lymphome annotations. "
|
| 312 |
+
"Hover over highlights to see the extracted values."
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
with gr.Tabs():
|
| 316 |
+
build_tab("pancreas")
|
| 317 |
+
build_tab("lymphome")
|
| 318 |
+
|
| 319 |
+
if __name__ == "__main__":
|
| 320 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
datasets
|
| 3 |
+
huggingface_hub<0.27
|