rahul7star commited on
Commit
8927bdc
·
verified ·
1 Parent(s): fa46cad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -13
app.py CHANGED
@@ -39,18 +39,29 @@ pipe.to("cuda")
39
  def pipeline_debug_info(pipe):
40
  info = []
41
 
42
- # Transformer config
 
 
 
43
  try:
 
 
44
  info.append(f"Transformer attention backend: {pipe.transformer.config.attn_implementation}")
45
  except:
46
- info.append("No transformer.attn_implementation")
47
 
48
- # Processor class
49
  try:
50
- proc = pipe.transformer.blocks[0].attn.processor
51
- info.append(f"Processor type: {type(proc)}")
52
- except Exception as e:
53
- info.append(f"Processor error: {e}")
 
 
 
 
 
 
54
 
55
  return "\n".join(info)
56
 
@@ -79,7 +90,7 @@ def generate_image(prompt, height, width, num_inference_steps, seed, randomize_s
79
  num_images = min(max(1, int(num_images)), 3)
80
 
81
  # Debug pipe info
82
- log(pipeline_debug_info())
83
 
84
  generator = torch.Generator("cuda").manual_seed(int(seed))
85
 
@@ -96,18 +107,20 @@ def generate_image(prompt, height, width, num_inference_steps, seed, randomize_s
96
  output_type="pil",
97
  )
98
 
99
- # Tensor diagnostics (shapes only)
100
  try:
101
- latent_shape = pipe.unet.config.sample_size
102
- log(f"UNet latent resolution (approx): {latent_shape}")
103
- except:
104
- pass
 
105
 
106
  log("Pipeline finished.")
107
  log("Returning images...")
108
 
109
  return result.images, seed, log_buffer.getvalue()
110
 
 
111
  # ------------------------
112
  # GRADIO UI
113
  # ------------------------
 
39
  def pipeline_debug_info(pipe):
40
  info = []
41
 
42
+ # Show basic pipeline internals
43
+ info.append("=== PIPELINE DEBUG INFO ===")
44
+
45
+ # Transformer info (Z-Image uses DiT/Transformer backbone)
46
  try:
47
+ info.append(f"Transformer type: {pipe.transformer.__class__.__name__}")
48
+ info.append(f"Transformer sample_size: {pipe.transformer.config.sample_size}")
49
  info.append(f"Transformer attention backend: {pipe.transformer.config.attn_implementation}")
50
  except:
51
+ info.append("Transformer diagnostics failed")
52
 
53
+ # VAE diagnostics
54
  try:
55
+ info.append(f"VAE latent channels: {pipe.vae.config.latent_channels}")
56
+ info.append(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
57
+ except:
58
+ info.append("VAE diagnostics failed")
59
+
60
+ # Attn backend globally
61
+ try:
62
+ info.append(f"Pipeline attention backend: {pipe.config.attn_implementation}")
63
+ except:
64
+ pass
65
 
66
  return "\n".join(info)
67
 
 
90
  num_images = min(max(1, int(num_images)), 3)
91
 
92
  # Debug pipe info
93
+ log(pipeline_debug_info(pipe))
94
 
95
  generator = torch.Generator("cuda").manual_seed(int(seed))
96
 
 
107
  output_type="pil",
108
  )
109
 
110
+ # Correct latent diagnostics (Z-Image uses VAE + Transformer)
111
  try:
112
+ log(f"VAE latent channels: {pipe.vae.config.latent_channels}")
113
+ log(f"VAE scaling factor: {pipe.vae.config.scaling_factor}")
114
+ log(f"Transformer latent size: {pipe.transformer.config.sample_size}")
115
+ except Exception as e:
116
+ log(f"Latent diagnostics error: {e}")
117
 
118
  log("Pipeline finished.")
119
  log("Returning images...")
120
 
121
  return result.images, seed, log_buffer.getvalue()
122
 
123
+
124
  # ------------------------
125
  # GRADIO UI
126
  # ------------------------