Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,112 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
from
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
# Path to the model
|
| 9 |
-
model_name = "ibm-granite/granite-docling-258M"
|
| 10 |
-
|
| 11 |
-
# Load the OCR model from Hugging Face (assuming you have access to it)
|
| 12 |
-
# In this case, let's load the model and tokenizer if needed
|
| 13 |
-
ocr_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 14 |
-
ocr_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
-
|
| 16 |
-
def pdf_to_markdown(file):
|
| 17 |
-
# Save uploaded file temporarily
|
| 18 |
-
tmp_path = file.name
|
| 19 |
-
|
| 20 |
-
# Convert PDF using Docling/VLM (Granite Docling)
|
| 21 |
-
converter = DocumentConverter(
|
| 22 |
-
format_options={
|
| 23 |
-
InputFormat.PDF: PdfFormatOption()
|
| 24 |
-
}
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# Perform OCR using granite-docling model if the file contains scanned text
|
| 28 |
-
result = converter.convert(tmp_path)
|
| 29 |
-
doc = result.document
|
| 30 |
-
|
| 31 |
-
# Export to Markdown (or you can export to JSON via doc.model_dump())
|
| 32 |
-
md = doc.export_to_markdown()
|
| 33 |
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
-
# Define
|
| 37 |
-
|
| 38 |
-
label="Markdown Output",
|
| 39 |
-
lines=20, # initial visible lines
|
| 40 |
-
max_lines=50, # maximum scrollable lines
|
| 41 |
-
placeholder="Converted Markdown will appear here..."
|
| 42 |
-
)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
outputs=output_box,
|
| 49 |
-
title="PDF β Markdown/JSON with Granite Docling (OCR)",
|
| 50 |
-
description="Upload a PDF (including scanned PDFs) and get parsed Markdown (or JSON) using Granite Docling via Docling, with OCR support."
|
| 51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
# Launch
|
| 54 |
if __name__ == "__main__":
|
| 55 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import time
|
| 3 |
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
import random
|
| 6 |
+
from PIL import Image, ImageOps
|
| 7 |
+
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Device setup for computation
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
|
| 12 |
+
# Define model and processor
|
| 13 |
+
model_id = "ibm-granite/granite-docling-258M"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Load the processor and model from Hugging Face
|
| 16 |
+
processor = AutoProcessor.from_pretrained(model_id, use_auth_token=True)
|
| 17 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(
|
| 18 |
+
model_id, device_map=device, torch_dtype=torch.bfloat16, use_auth_token=True
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
+
if not torch.cuda.is_available():
|
| 21 |
+
model = model.to(device)
|
| 22 |
+
|
| 23 |
+
# Function to clean up special tokens in the model's response
|
| 24 |
+
def clean_model_response(text: str) -> str:
|
| 25 |
+
special_tokens = [
|
| 26 |
+
"<|end_of_text|>", "<|end|>", "<|assistant|>", "<|user|>", "<|system|>", "<pad>", "</s>", "<s>",
|
| 27 |
+
]
|
| 28 |
+
cleaned = text
|
| 29 |
+
for token in special_tokens:
|
| 30 |
+
cleaned = cleaned.replace(token, "")
|
| 31 |
+
cleaned = cleaned.strip()
|
| 32 |
+
return cleaned if cleaned else "No response generated."
|
| 33 |
+
|
| 34 |
+
# Function to add random padding to images
|
| 35 |
+
def add_random_padding(image: Image.Image, min_percent: float = 0.1, max_percent: float = 0.10) -> Image.Image:
|
| 36 |
+
image = image.convert("RGB")
|
| 37 |
+
width, height = image.size
|
| 38 |
+
pad_w_percent = random.uniform(min_percent, max_percent)
|
| 39 |
+
pad_h_percent = random.uniform(min_percent, max_percent)
|
| 40 |
+
pad_w = int(width * pad_w_percent)
|
| 41 |
+
pad_h = int(height * pad_h_percent)
|
| 42 |
+
corner_pixel = image.getpixel((0, 0)) # Top-left corner
|
| 43 |
+
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
|
| 44 |
+
return padded_image
|
| 45 |
+
|
| 46 |
+
# Function to generate model output for image and question
|
| 47 |
+
def generate_with_model(question: str, image_path: str, apply_padding: bool = False) -> str:
|
| 48 |
+
try:
|
| 49 |
+
# Open the image
|
| 50 |
+
image = Image.open(image_path).convert("RGB")
|
| 51 |
+
if apply_padding:
|
| 52 |
+
image = add_random_padding(image)
|
| 53 |
+
|
| 54 |
+
# Prepare the input messages for the model
|
| 55 |
+
messages = [
|
| 56 |
+
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": question}]}
|
| 57 |
+
]
|
| 58 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 59 |
+
|
| 60 |
+
# Tokenize inputs
|
| 61 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 62 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 63 |
+
|
| 64 |
+
# Generate output with the model
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
generated_ids = model.generate(
|
| 67 |
+
**inputs,
|
| 68 |
+
max_new_tokens=4096,
|
| 69 |
+
temperature=0.0,
|
| 70 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].shape[1]:], skip_special_tokens=False)[0]
|
| 74 |
+
cleaned_response = clean_model_response(generated_texts)
|
| 75 |
+
return cleaned_response
|
| 76 |
+
|
| 77 |
+
except Exception as e:
|
| 78 |
+
return f"Error processing image: {e}"
|
| 79 |
+
|
| 80 |
+
# Gradio UI for uploading the image and asking questions
|
| 81 |
+
def handle_image_upload(uploaded_file: str | None, question: str) -> str:
|
| 82 |
+
if uploaded_file is None:
|
| 83 |
+
return "No image uploaded."
|
| 84 |
+
|
| 85 |
+
# Generate result based on the uploaded image and the user's question
|
| 86 |
+
response = generate_with_model(question.strip(), uploaded_file)
|
| 87 |
+
return response
|
| 88 |
+
|
| 89 |
+
# Gradio interface setup
|
| 90 |
+
def build_interface():
|
| 91 |
+
with gr.Blocks() as demo:
|
| 92 |
+
gr.Markdown("# Granite Docling 258M Demo")
|
| 93 |
+
|
| 94 |
+
# Upload Image
|
| 95 |
+
upload_button = gr.UploadButton("π Upload Image", file_types=["image"])
|
| 96 |
+
|
| 97 |
+
# Textbox to submit questions
|
| 98 |
+
question_input = gr.Textbox(submit_btn=True, show_label=False, placeholder="Ask a question...", scale=4)
|
| 99 |
+
|
| 100 |
+
# Button to submit and process the image and question
|
| 101 |
+
result_output = gr.Textbox(label="Model Response", interactive=False, lines=5)
|
| 102 |
+
|
| 103 |
+
# Handle image upload and question submission
|
| 104 |
+
upload_button.upload(handle_image_upload, inputs=[upload_button, question_input], outputs=result_output)
|
| 105 |
+
question_input.submit(handle_image_upload, inputs=[upload_button, question_input], outputs=result_output)
|
| 106 |
+
|
| 107 |
+
return demo
|
| 108 |
|
| 109 |
+
# Launch Gradio app
|
| 110 |
if __name__ == "__main__":
|
| 111 |
+
demo = build_interface()
|
| 112 |
+
demo.launch()
|