Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- cgi_classification_app.py +46 -180
cgi_classification_app.py
CHANGED
|
@@ -8,197 +8,63 @@ Original file is located at
|
|
| 8 |
"""
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
-
|
| 12 |
-
from sklearn.model_selection import train_test_split
|
| 13 |
-
from sklearn.metrics import (
|
| 14 |
-
accuracy_score,
|
| 15 |
-
f1_score,
|
| 16 |
-
confusion_matrix,
|
| 17 |
-
ConfusionMatrixDisplay,
|
| 18 |
-
)
|
| 19 |
-
from sklearn.preprocessing import StandardScaler
|
| 20 |
-
from sklearn.decomposition import PCA
|
| 21 |
-
import umap
|
| 22 |
-
import pywt
|
| 23 |
-
import os
|
| 24 |
from PIL import Image
|
| 25 |
-
import matplotlib.pyplot as plt
|
| 26 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 27 |
from xgboost import XGBClassifier
|
| 28 |
-
from sklearn.model_selection import cross_val_score, KFold
|
| 29 |
-
from sklearn.dummy import DummyClassifier
|
| 30 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 31 |
-
from sklearn.svm import SVC
|
| 32 |
-
from sklearn.neighbors import KNeighborsClassifier
|
| 33 |
-
from sklearn.model_selection import train_test_split
|
| 34 |
-
from sklearn.metrics import classification_report
|
| 35 |
-
import plotly.express as px
|
| 36 |
-
import pandas as pd
|
| 37 |
-
import joblib
|
| 38 |
-
from tqdm import tqdm
|
| 39 |
-
import lzma
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class WaveletClassifier:
|
| 43 |
-
def __init__(
|
| 44 |
-
self,
|
| 45 |
-
wavelets=["db4", "db10"],
|
| 46 |
-
umap_n_neighbors=16,
|
| 47 |
-
umap_n_components=32,
|
| 48 |
-
random_state=42,
|
| 49 |
-
):
|
| 50 |
-
self.wavelets = wavelets
|
| 51 |
-
self.umap_n_neighbors = umap_n_neighbors
|
| 52 |
-
self.umap_n_components = umap_n_components
|
| 53 |
-
self.random_state = random_state
|
| 54 |
-
self.reducer = umap.UMAP(
|
| 55 |
-
n_neighbors=self.umap_n_neighbors,
|
| 56 |
-
n_components=self.umap_n_components,
|
| 57 |
-
random_state=self.random_state,
|
| 58 |
-
)
|
| 59 |
-
self.classifier = KNeighborsClassifier(n_neighbors=7) # Default classifier
|
| 60 |
-
|
| 61 |
-
def load_images_from_folder(self, folder):
|
| 62 |
-
images = []
|
| 63 |
-
labels = []
|
| 64 |
-
print(f"Loading images from {folder}")
|
| 65 |
-
for filename in tqdm(os.listdir(folder)):
|
| 66 |
-
if not (
|
| 67 |
-
filename.endswith(".jpg")
|
| 68 |
-
or filename.endswith(".png")
|
| 69 |
-
or filename.endswith("jpeg")
|
| 70 |
-
or filename.endswith("webp")
|
| 71 |
-
):
|
| 72 |
-
continue
|
| 73 |
-
img = Image.open(os.path.join(folder, filename))
|
| 74 |
-
img = img.resize((512, 512))
|
| 75 |
-
if img is not None:
|
| 76 |
-
images.append(img)
|
| 77 |
-
labels.append(
|
| 78 |
-
1 if "CGI" in folder else 0
|
| 79 |
-
) # Assuming folder names contain "AI" or not
|
| 80 |
-
return images, labels
|
| 81 |
-
|
| 82 |
-
def extract_wavelet_features(self, images):
|
| 83 |
-
all_features = []
|
| 84 |
-
for img in images:
|
| 85 |
-
img_gray = img.convert("L")
|
| 86 |
-
img_array = np.array(img_gray)
|
| 87 |
-
features = []
|
| 88 |
-
for wavelet in self.wavelets:
|
| 89 |
-
cA, cD = pywt.dwt(img_array, wavelet)
|
| 90 |
-
features.extend(cD.flatten())
|
| 91 |
-
all_features.append(features)
|
| 92 |
-
return np.array(all_features)
|
| 93 |
-
|
| 94 |
-
def fit(self, train_folder1, train_folder2):
|
| 95 |
-
# Load images and extract features
|
| 96 |
-
images1, labels1 = self.load_images_from_folder(train_folder1)
|
| 97 |
-
images2, labels2 = self.load_images_from_folder(train_folder2)
|
| 98 |
-
|
| 99 |
-
min_length = min(len(images1), len(images2))
|
| 100 |
-
images1 = images1[:min_length]
|
| 101 |
-
images2 = images2[:min_length]
|
| 102 |
-
labels1 = labels1[:min_length]
|
| 103 |
-
labels2 = labels2[:min_length]
|
| 104 |
-
|
| 105 |
-
images = images1 + images2
|
| 106 |
-
labels = labels1 + labels2
|
| 107 |
-
features = self.extract_wavelet_features(images)
|
| 108 |
-
|
| 109 |
-
# Apply UMAP dimensionality reduction
|
| 110 |
-
embeddings = self.reducer.fit_transform(features)
|
| 111 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
| 112 |
-
embeddings, labels, test_size=0.2, random_state=42
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
# Train the classifier
|
| 116 |
-
self.classifier.fit(X_train, y_train)
|
| 117 |
-
|
| 118 |
-
acc = self.classifier.score(X_test, y_test)
|
| 119 |
-
y_pred = self.classifier.predict(X_test)
|
| 120 |
-
print(f"Classifier accuracy = {acc}")
|
| 121 |
-
|
| 122 |
-
f1 = f1_score(y_test, y_pred)
|
| 123 |
-
print(f"Classifier F1 = {f1}")
|
| 124 |
-
print(classification_report(y_test, y_pred))
|
| 125 |
-
|
| 126 |
-
def predict(self, images):
|
| 127 |
-
# Load images and extract features
|
| 128 |
-
features = self.extract_wavelet_features(images)
|
| 129 |
-
|
| 130 |
-
# Apply UMAP dimensionality reduction
|
| 131 |
-
embeddings = self.reducer.transform(features)
|
| 132 |
-
|
| 133 |
-
# Make predictions
|
| 134 |
-
return self.classifier.predict(embeddings)
|
| 135 |
-
|
| 136 |
-
def predict_proba(self, images):
|
| 137 |
-
# Load images and extract features
|
| 138 |
-
features = self.extract_wavelet_features(images)
|
| 139 |
-
|
| 140 |
-
# Apply UMAP dimensionality reduction
|
| 141 |
-
embeddings = self.reducer.transform(features)
|
| 142 |
-
|
| 143 |
-
# Make predictions
|
| 144 |
-
return self.classifier.predict_proba(embeddings)
|
| 145 |
-
|
| 146 |
-
def score(self, test_folder):
|
| 147 |
-
# Load images and extract features
|
| 148 |
-
images, labels = self.load_images_from_folder(test_folder)
|
| 149 |
-
features = self.extract_wavelet_features(images)
|
| 150 |
-
|
| 151 |
-
# Apply UMAP dimensionality reduction
|
| 152 |
-
embeddings = self.reducer.transform(features)
|
| 153 |
-
|
| 154 |
-
# Evaluate the classifier
|
| 155 |
-
return self.classifier.score(embeddings, labels)
|
| 156 |
-
|
| 157 |
-
def cross_val_score(self, folder1, folder2, n_splits=5):
|
| 158 |
-
# Load images and extract features
|
| 159 |
-
# Load images and extract features
|
| 160 |
-
images1, labels1 = self.load_images_from_folder(folder1)
|
| 161 |
-
images2, labels2 = self.load_images_from_folder(folder2)
|
| 162 |
-
|
| 163 |
-
min_length = min(len(images1), len(images2))
|
| 164 |
-
images1 = images1[:min_length]
|
| 165 |
-
images2 = images2[:min_length]
|
| 166 |
-
labels1 = labels1[:min_length]
|
| 167 |
-
labels2 = labels2[:min_length]
|
| 168 |
-
|
| 169 |
-
images = images1 + images2
|
| 170 |
-
labels = labels1 + labels2
|
| 171 |
-
features = self.extract_wavelet_features(images)
|
| 172 |
-
|
| 173 |
-
# Apply UMAP dimensionality reduction
|
| 174 |
-
embeddings = self.reducer.fit_transform(features)
|
| 175 |
-
# Perform four-fold cross-validation
|
| 176 |
-
kfold = KFold(n_splits=n_splits, shuffle=True, random_state=42)
|
| 177 |
-
scores = cross_val_score(
|
| 178 |
-
self.classifier, embeddings, labels, cv=kfold, scoring="accuracy"
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
# Print the cross-validation scores
|
| 182 |
-
print("Cross-validation scores:", scores)
|
| 183 |
-
print("Average cross-validation score:", scores.mean())
|
| 184 |
-
|
| 185 |
-
def save_model(self, filename):
|
| 186 |
-
joblib.dump(self, filename, compress=("lzma", 9))
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
|
| 195 |
|
| 196 |
def classify_image(image):
|
| 197 |
-
|
| 198 |
-
probabilities = model.predict_proba([image.resize((512, 512))])
|
| 199 |
# Convert to 2D array for model input
|
|
|
|
| 200 |
labels = ["Photo", "CGI"]
|
| 201 |
-
return {f"{labels[i]}": prob for i, prob in enumerate(probabilities
|
| 202 |
|
| 203 |
|
| 204 |
interface = gr.Interface(
|
|
|
|
| 8 |
"""
|
| 9 |
|
| 10 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from PIL import Image
|
|
|
|
| 12 |
import numpy as np
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from scipy.fftpack import fft2
|
| 15 |
+
from tensorflow.keras.models import load_model, Model
|
| 16 |
from xgboost import XGBClassifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# classifier
|
| 19 |
+
xgb_clf = XGBClassifier()
|
| 20 |
+
xgb_clf.load_model("xgb_cgi_classifier.json")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Function to apply Fourier transform
|
| 24 |
+
def apply_fourier_transform(image):
|
| 25 |
+
image = np.array(image)
|
| 26 |
+
fft_image = fft2(image)
|
| 27 |
+
return np.abs(fft_image)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def preprocess_image(image):
|
| 31 |
+
try:
|
| 32 |
+
image = Image.fromarray(image)
|
| 33 |
+
image = image.convert("L")
|
| 34 |
+
image = image.resize((256, 256))
|
| 35 |
+
image = apply_fourier_transform(image)
|
| 36 |
+
image = np.expand_dims(
|
| 37 |
+
image, axis=-1
|
| 38 |
+
) # Expand dimensions to match model input shape
|
| 39 |
+
image = np.expand_dims(image, axis=0) # Expand to add batch dimension
|
| 40 |
+
return image
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error processing image: {e}")
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# Function to load embedding model and calculate embeddings
|
| 47 |
+
def calculate_embeddings(image, model_path="embedding_modelv2.keras"):
|
| 48 |
+
# Load the trained model
|
| 49 |
+
model = load_model(model_path)
|
| 50 |
+
|
| 51 |
+
# Remove the final classification layer to get embeddings
|
| 52 |
+
embedding_model = Model(inputs=model.input, outputs=model.output)
|
| 53 |
|
| 54 |
+
# Preprocess the image
|
| 55 |
+
preprocessed_image = preprocess_image(image)
|
| 56 |
+
# Calculate embeddings
|
| 57 |
+
embeddings = embedding_model.predict(preprocessed_image)
|
| 58 |
|
| 59 |
+
return embeddings
|
| 60 |
|
| 61 |
|
| 62 |
def classify_image(image):
|
| 63 |
+
embeddings = calculate_embeddings(image)
|
|
|
|
| 64 |
# Convert to 2D array for model input
|
| 65 |
+
probabilities = xgb_clf.predict_proba(embeddings)[0]
|
| 66 |
labels = ["Photo", "CGI"]
|
| 67 |
+
return {f"{labels[i]}": prob for i, prob in enumerate(probabilities)}
|
| 68 |
|
| 69 |
|
| 70 |
interface = gr.Interface(
|