Spaces:
Sleeping
Sleeping
Update src/app/conversation_core.py
Browse files- src/app/conversation_core.py +122 -216
src/app/conversation_core.py
CHANGED
|
@@ -1,53 +1,43 @@
|
|
| 1 |
|
| 2 |
###############################################################
|
| 3 |
-
# conversation_core.py β Agentic Partner Core
|
| 4 |
###############################################################
|
| 5 |
|
| 6 |
import io
|
| 7 |
import re
|
| 8 |
-
import tempfile
|
| 9 |
from dataclasses import dataclass
|
| 10 |
from typing import List, Optional, Tuple
|
| 11 |
-
from .config import get_user_dir
|
| 12 |
|
| 13 |
import numpy as np
|
| 14 |
-
from transformers import pipeline
|
| 15 |
from pydub import AudioSegment
|
| 16 |
-
|
| 17 |
import torch
|
| 18 |
from gtts import gTTS
|
| 19 |
from transformers import (
|
| 20 |
AutoTokenizer,
|
| 21 |
AutoModelForCausalLM,
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
# MODEL / LANGUAGE CONSTANTS
|
| 26 |
-
###############################################################
|
| 27 |
|
| 28 |
-
QWEN_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 29 |
-
WHISPER_MODEL_SIZE = "base" # you can change to "large-v3" if GPU budget allows
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
"
|
| 40 |
-
"
|
| 41 |
-
"
|
| 42 |
-
"
|
| 43 |
-
"
|
| 44 |
-
"
|
| 45 |
-
"korean": "ko",
|
| 46 |
-
"arabic": "ar",
|
| 47 |
-
"hindi": "hi",
|
| 48 |
}
|
| 49 |
|
| 50 |
-
#
|
| 51 |
GTTS_LANG = {
|
| 52 |
"english": "en",
|
| 53 |
"spanish": "es",
|
|
@@ -60,26 +50,24 @@ GTTS_LANG = {
|
|
| 60 |
"italian": "it",
|
| 61 |
}
|
| 62 |
|
| 63 |
-
CONTROL_PROMPTS = {
|
| 64 |
-
"A1": "Use extremely short, simple sentences and very basic vocabulary.",
|
| 65 |
-
"A2": "Use simple sentences and common everyday vocabulary.",
|
| 66 |
-
"B1": "Use moderately complex sentences and conversational vocabulary.",
|
| 67 |
-
"B2": "Use natural, fluent sentences with richer vocabulary.",
|
| 68 |
-
"C1": "Use complex, advanced sentences with nuanced expressions.",
|
| 69 |
-
"C2": "Use highly sophisticated, near-native language and style.",
|
| 70 |
-
}
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
global _QWEN_TOKENIZER, _QWEN_MODEL
|
| 79 |
-
if
|
| 80 |
return _QWEN_TOKENIZER, _QWEN_MODEL
|
| 81 |
|
| 82 |
-
print("[conversation_core]
|
|
|
|
| 83 |
tok = AutoTokenizer.from_pretrained(QWEN_MODEL_NAME, trust_remote_code=True)
|
| 84 |
model = AutoModelForCausalLM.from_pretrained(
|
| 85 |
QWEN_MODEL_NAME,
|
|
@@ -87,58 +75,30 @@ def load_partner_lm() -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
|
| 87 |
device_map="auto",
|
| 88 |
trust_remote_code=True,
|
| 89 |
)
|
|
|
|
| 90 |
_QWEN_TOKENIZER = tok
|
| 91 |
_QWEN_MODEL = model
|
| 92 |
return tok, model
|
| 93 |
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
"japanese": "ja",
|
| 106 |
-
"chinese": "zh",
|
| 107 |
-
"korean": "ko",
|
| 108 |
-
}
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
##########################################
|
| 112 |
-
# SPEECH RECOGNITION β faster-whisper
|
| 113 |
-
##########################################
|
| 114 |
-
|
| 115 |
-
def transcribe_audio(audio_segment, spoken_lang=None):
|
| 116 |
-
"""
|
| 117 |
-
Accepts a pydub AudioSegment (mono, 16k).
|
| 118 |
-
Returns transcript, detected_language, confidence.
|
| 119 |
-
"""
|
| 120 |
-
global _whisper_model
|
| 121 |
-
if _whisper_model is None:
|
| 122 |
-
load_whisper()
|
| 123 |
-
|
| 124 |
-
import numpy as np
|
| 125 |
-
|
| 126 |
-
audio = np.array(audio_segment.get_array_of_samples()).astype("float32") / 32768.0
|
| 127 |
-
|
| 128 |
-
segments, info = _whisper_model.transcribe(
|
| 129 |
-
audio,
|
| 130 |
-
beam_size=5,
|
| 131 |
-
language=spoken_lang,
|
| 132 |
)
|
| 133 |
-
|
| 134 |
-
full_text = " ".join([s.text.strip() for s in segments])
|
| 135 |
-
|
| 136 |
-
return full_text.strip(), info.language, info.language_probability
|
| 137 |
|
| 138 |
|
| 139 |
-
|
| 140 |
# DATA STRUCTURE
|
| 141 |
-
|
| 142 |
|
| 143 |
@dataclass
|
| 144 |
class ConversationTurn:
|
|
@@ -146,104 +106,90 @@ class ConversationTurn:
|
|
| 146 |
text: str
|
| 147 |
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
| 152 |
|
| 153 |
def clean_assistant_reply(text: str) -> str:
|
| 154 |
-
"""
|
| 155 |
if not text:
|
| 156 |
return ""
|
| 157 |
|
| 158 |
-
# Remove
|
| 159 |
-
text = re.sub(r"(?i)\
|
|
|
|
| 160 |
|
| 161 |
-
# Remove
|
| 162 |
text = re.sub(r"(?m)^\s*[-β’*]\s+.*$", "", text)
|
| 163 |
text = re.sub(r"(?m)^\s*\d+\.\s+.*$", "", text)
|
| 164 |
|
| 165 |
-
# Remove
|
| 166 |
identity_patterns = [
|
| 167 |
-
r"(?i)i am
|
| 168 |
-
r"(?i)my name is [A-Za-zÀâüΓΓΓΓ]+.*",
|
| 169 |
-
r"(?i)i was created.*",
|
| 170 |
-
r"(?i)human resources manager.*",
|
| 171 |
-
r"(?i)job description.*",
|
| 172 |
r"(?i)i am a large language model.*",
|
|
|
|
|
|
|
| 173 |
]
|
| 174 |
-
for
|
| 175 |
-
text = re.sub(
|
| 176 |
-
|
| 177 |
-
# Trim hanging word fragments at the end
|
| 178 |
-
text = re.sub(r"[A-Za-zΓΓΓÀâüΓ]+$", "", text)
|
| 179 |
|
| 180 |
-
# Collapse whitespace
|
| 181 |
text = re.sub(r"\s{2,}", " ", text)
|
| 182 |
return text.strip()
|
| 183 |
|
| 184 |
|
| 185 |
-
|
|
|
|
| 186 |
# CONVERSATION MANAGER
|
| 187 |
-
|
| 188 |
|
| 189 |
class ConversationManager:
|
| 190 |
def __init__(
|
| 191 |
self,
|
| 192 |
-
target_language
|
| 193 |
-
native_language
|
| 194 |
-
cefr_level
|
| 195 |
-
topic
|
| 196 |
):
|
| 197 |
-
self.target_language =
|
| 198 |
-
self.native_language =
|
| 199 |
-
self.cefr_level = cefr_level
|
| 200 |
-
self.topic = topic
|
| 201 |
self.history: List[ConversationTurn] = []
|
| 202 |
|
| 203 |
-
# Warm-load models once per session
|
| 204 |
load_partner_lm()
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
# PROMPT
|
| 209 |
-
|
| 210 |
|
| 211 |
-
def _build_system_prompt(self)
|
| 212 |
base = (
|
| 213 |
f"You are a friendly conversation partner speaking {self.target_language}. "
|
| 214 |
f"Reply ONLY in {self.target_language}. "
|
| 215 |
-
f"Do NOT explain grammar, vocabulary, or translations unless the user explicitly asks. "
|
| 216 |
-
f"Do NOT describe what the sentence means, do NOT say 'the sentence translates to...', "
|
| 217 |
-
f"and do NOT mention that you are explaining anything. "
|
| 218 |
f"Adapt your language to CEFR level {self.cefr_level}. "
|
| 219 |
f"{CONTROL_PROMPTS.get(self.cefr_level, '')} "
|
| 220 |
-
"
|
| 221 |
-
"
|
| 222 |
-
"Never
|
| 223 |
-
"Do NOT say goodbye or conclude unless the user does. "
|
| 224 |
-
"Never talk about being an AI, model, or assistant. "
|
| 225 |
-
"Do not mention job descriptions, resumes, or HR responsibilities unless the user clearly asks. "
|
| 226 |
)
|
| 227 |
-
if self.topic.strip():
|
| 228 |
-
base += f"The main topic of conversation is: {self.topic.strip()}. "
|
| 229 |
return base
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
def _generate_lm(self, user_text: str) -> str:
|
| 232 |
tok, model = load_partner_lm()
|
| 233 |
|
| 234 |
-
system_prompt = self._build_system_prompt()
|
| 235 |
messages = [
|
| 236 |
-
{"role": "system", "content":
|
| 237 |
-
{
|
| 238 |
-
"role": "user",
|
| 239 |
-
"content": f"The user (who speaks {self.native_language}) said: {user_text}",
|
| 240 |
-
},
|
| 241 |
]
|
| 242 |
|
| 243 |
prompt = tok.apply_chat_template(
|
| 244 |
-
messages,
|
| 245 |
-
tokenize=False,
|
| 246 |
-
add_generation_prompt=True,
|
| 247 |
)
|
| 248 |
|
| 249 |
enc = tok(prompt, return_tensors="pt").to(model.device)
|
|
@@ -251,66 +197,49 @@ class ConversationManager:
|
|
| 251 |
with torch.no_grad():
|
| 252 |
out = model.generate(
|
| 253 |
**enc,
|
| 254 |
-
max_new_tokens=160,
|
| 255 |
temperature=0.8,
|
| 256 |
top_p=0.95,
|
| 257 |
-
top_k=50,
|
| 258 |
repetition_penalty=1.15,
|
| 259 |
-
pad_token_id=tok.eos_token_id,
|
| 260 |
do_sample=True,
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
-
raw = tok.decode(out[0], skip_special_tokens=True)
|
| 264 |
-
|
| 265 |
-
# If the user text is echoed, strip it
|
| 266 |
-
if user_text in raw:
|
| 267 |
-
raw = raw.split(user_text)[-1].strip()
|
| 268 |
-
|
| 269 |
-
# Remove "assistant" label echoes
|
| 270 |
-
lines = [
|
| 271 |
-
ln for ln in raw.splitlines()
|
| 272 |
-
if ln.strip().lower() not in ("assistant", "assistant:")
|
| 273 |
-
]
|
| 274 |
-
raw = "\n".join(lines).strip()
|
| 275 |
|
| 276 |
-
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
# PUBLIC REPLY API
|
| 280 |
-
|
| 281 |
|
| 282 |
-
def reply(self, user_text: str, input_lang
|
| 283 |
-
"""Generate a reply + explanation + TTS audio."""
|
| 284 |
self.history.append(ConversationTurn("user", user_text))
|
| 285 |
|
| 286 |
assistant_text = self._generate_lm(user_text)
|
| 287 |
self.history.append(ConversationTurn("assistant", assistant_text))
|
| 288 |
|
| 289 |
explanation = self._generate_explanation(assistant_text)
|
| 290 |
-
|
| 291 |
|
| 292 |
return {
|
| 293 |
"reply_text": assistant_text,
|
| 294 |
"explanation": explanation,
|
| 295 |
-
"audio":
|
| 296 |
}
|
| 297 |
|
| 298 |
-
|
| 299 |
-
# SHORT EXPLANATION
|
| 300 |
-
|
| 301 |
|
| 302 |
def _generate_explanation(self, assistant_text: str) -> str:
|
| 303 |
-
"""Return exactly ONE simple native-language sentence, no meta, no logic."""
|
| 304 |
-
if not assistant_text:
|
| 305 |
-
return ""
|
| 306 |
-
|
| 307 |
tok, model = load_partner_lm()
|
|
|
|
| 308 |
prompt = (
|
| 309 |
f"Rewrite the meaning of this {self.target_language} sentence "
|
| 310 |
-
f"in ONE
|
| 311 |
-
f"Do NOT explain what you are doing, do NOT say 'the sentence means', "
|
| 312 |
-
f"do NOT describe tone, and do NOT provide multiple versions.\n"
|
| 313 |
-
f"Sentence: \"{assistant_text}\""
|
| 314 |
)
|
| 315 |
|
| 316 |
enc = tok(prompt, return_tensors="pt").to(model.device)
|
|
@@ -323,60 +252,39 @@ class ConversationManager:
|
|
| 323 |
pad_token_id=tok.eos_token_id,
|
| 324 |
)
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
# keep first sentence only
|
| 330 |
-
parts = re.split(r"(?<=[.!?])\s+", raw)
|
| 331 |
-
if parts:
|
| 332 |
-
raw = parts[0].strip()
|
| 333 |
|
| 334 |
-
#
|
| 335 |
-
|
| 336 |
-
|
| 337 |
|
| 338 |
-
|
|
|
|
|
|
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
###########################################################
|
| 343 |
-
# AUDIO TRANSCRIPTION β Transformers Whisper
|
| 344 |
-
###########################################################
|
| 345 |
-
|
| 346 |
-
from transformers import pipeline
|
| 347 |
-
|
| 348 |
-
###########################################################
|
| 349 |
-
# AUDIO TRANSCRIPTION β Transformers Whisper
|
| 350 |
-
###########################################################
|
| 351 |
-
|
| 352 |
-
whisper_pipe = pipeline(
|
| 353 |
-
task="automatic-speech-recognition",
|
| 354 |
-
model="openai/whisper-small",
|
| 355 |
-
device="cpu"
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
def transcribe(self, audio_segment, spoken_lang=None):
|
| 359 |
-
|
| 360 |
-
|
|
|
|
| 361 |
audio = np.array(audio_segment.get_array_of_samples()).astype("float32")
|
| 362 |
-
audio = audio / np.max(np.abs(audio))
|
| 363 |
-
|
| 364 |
-
result =
|
| 365 |
text = result.get("text", "").strip()
|
| 366 |
-
|
| 367 |
return text, spoken_lang or "unknown", 1.0
|
| 368 |
|
| 369 |
-
|
| 370 |
-
#
|
| 371 |
-
|
| 372 |
|
| 373 |
def text_to_speech(self, text: str) -> Optional[bytes]:
|
| 374 |
-
"""Return MP3 bytes for the assistant text, or None on failure."""
|
| 375 |
if not text:
|
| 376 |
return None
|
| 377 |
try:
|
| 378 |
-
|
| 379 |
-
tts = gTTS(text=text, lang=
|
| 380 |
buf = io.BytesIO()
|
| 381 |
tts.write_to_fp(buf)
|
| 382 |
return buf.getvalue()
|
|
@@ -384,8 +292,6 @@ class ConversationManager:
|
|
| 384 |
return None
|
| 385 |
|
| 386 |
|
| 387 |
-
|
| 388 |
# END OF FILE
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
|
|
|
| 1 |
|
| 2 |
###############################################################
|
| 3 |
+
# conversation_core.py β Agentic Partner Core
|
| 4 |
###############################################################
|
| 5 |
|
| 6 |
import io
|
| 7 |
import re
|
|
|
|
| 8 |
from dataclasses import dataclass
|
| 9 |
from typing import List, Optional, Tuple
|
|
|
|
| 10 |
|
| 11 |
import numpy as np
|
|
|
|
| 12 |
from pydub import AudioSegment
|
|
|
|
| 13 |
import torch
|
| 14 |
from gtts import gTTS
|
| 15 |
from transformers import (
|
| 16 |
AutoTokenizer,
|
| 17 |
AutoModelForCausalLM,
|
| 18 |
+
pipeline,
|
| 19 |
)
|
| 20 |
|
| 21 |
+
from .config import get_user_dir
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
################################################################
|
| 25 |
+
# MODEL CONSTANTS
|
| 26 |
+
################################################################
|
| 27 |
|
| 28 |
+
QWEN_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 29 |
+
|
| 30 |
+
# CEFR control hints
|
| 31 |
+
CONTROL_PROMPTS = {
|
| 32 |
+
"A1": "Use extremely short, simple sentences and very basic vocabulary.",
|
| 33 |
+
"A2": "Use simple sentences and common everyday vocabulary.",
|
| 34 |
+
"B1": "Use moderately complex sentences and conversational vocabulary.",
|
| 35 |
+
"B2": "Use natural, fluent sentences with richer vocabulary.",
|
| 36 |
+
"C1": "Use complex, advanced sentences with nuanced expressions.",
|
| 37 |
+
"C2": "Use highly sophisticated, near-native language and style.",
|
|
|
|
|
|
|
|
|
|
| 38 |
}
|
| 39 |
|
| 40 |
+
# spoken language β TTS language
|
| 41 |
GTTS_LANG = {
|
| 42 |
"english": "en",
|
| 43 |
"spanish": "es",
|
|
|
|
| 50 |
"italian": "it",
|
| 51 |
}
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
################################################################
|
| 55 |
+
# GLOBAL MODELS
|
| 56 |
+
################################################################
|
| 57 |
|
| 58 |
+
_QWEN_TOKENIZER = None
|
| 59 |
+
_QWEN_MODEL = None
|
| 60 |
+
_WHISPER_PIPE = None
|
| 61 |
|
| 62 |
+
|
| 63 |
+
def load_partner_lm():
|
| 64 |
+
"""Load Qwen conversational model once."""
|
| 65 |
global _QWEN_TOKENIZER, _QWEN_MODEL
|
| 66 |
+
if _QWEN_MODEL is not None:
|
| 67 |
return _QWEN_TOKENIZER, _QWEN_MODEL
|
| 68 |
|
| 69 |
+
print("[conversation_core] loading:", QWEN_MODEL_NAME)
|
| 70 |
+
|
| 71 |
tok = AutoTokenizer.from_pretrained(QWEN_MODEL_NAME, trust_remote_code=True)
|
| 72 |
model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
QWEN_MODEL_NAME,
|
|
|
|
| 75 |
device_map="auto",
|
| 76 |
trust_remote_code=True,
|
| 77 |
)
|
| 78 |
+
|
| 79 |
_QWEN_TOKENIZER = tok
|
| 80 |
_QWEN_MODEL = model
|
| 81 |
return tok, model
|
| 82 |
|
| 83 |
|
| 84 |
+
def load_whisper_pipe():
|
| 85 |
+
"""Load Whisper ASR pipeline once."""
|
| 86 |
+
global _WHISPER_PIPE
|
| 87 |
+
if _WHISPER_PIPE is not None:
|
| 88 |
+
return _WHISPER_PIPE
|
| 89 |
|
| 90 |
+
print("[conversation_core] loading Whisper pipelineβ¦")
|
| 91 |
+
_WHISPER_PIPE = pipeline(
|
| 92 |
+
"automatic-speech-recognition",
|
| 93 |
+
model="openai/whisper-small",
|
| 94 |
+
device="cpu",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
+
return _WHISPER_PIPE
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
|
| 99 |
+
################################################################
|
| 100 |
# DATA STRUCTURE
|
| 101 |
+
################################################################
|
| 102 |
|
| 103 |
@dataclass
|
| 104 |
class ConversationTurn:
|
|
|
|
| 106 |
text: str
|
| 107 |
|
| 108 |
|
| 109 |
+
|
| 110 |
+
################################################################
|
| 111 |
+
# CLEANING LM OUTPUT
|
| 112 |
+
################################################################
|
| 113 |
|
| 114 |
def clean_assistant_reply(text: str) -> str:
|
| 115 |
+
"""Remove meta junk, labels, identity statements."""
|
| 116 |
if not text:
|
| 117 |
return ""
|
| 118 |
|
| 119 |
+
# Remove "assistant:" echo
|
| 120 |
+
text = re.sub(r"(?i)\bassistant\s*:\s*", "", text)
|
| 121 |
+
text = re.sub(r"(?i)\buser\s*:\s*", "", text)
|
| 122 |
|
| 123 |
+
# Remove bullet lists (not desired in conversation)
|
| 124 |
text = re.sub(r"(?m)^\s*[-β’*]\s+.*$", "", text)
|
| 125 |
text = re.sub(r"(?m)^\s*\d+\.\s+.*$", "", text)
|
| 126 |
|
| 127 |
+
# Remove identity claims
|
| 128 |
identity_patterns = [
|
| 129 |
+
r"(?i)i am an ai.*",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
r"(?i)i am a large language model.*",
|
| 131 |
+
r"(?i)i was created.*",
|
| 132 |
+
r"(?i)my name is .*",
|
| 133 |
]
|
| 134 |
+
for p in identity_patterns:
|
| 135 |
+
text = re.sub(p, "", text)
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
| 137 |
text = re.sub(r"\s{2,}", " ", text)
|
| 138 |
return text.strip()
|
| 139 |
|
| 140 |
|
| 141 |
+
|
| 142 |
+
################################################################
|
| 143 |
# CONVERSATION MANAGER
|
| 144 |
+
################################################################
|
| 145 |
|
| 146 |
class ConversationManager:
|
| 147 |
def __init__(
|
| 148 |
self,
|
| 149 |
+
target_language="german",
|
| 150 |
+
native_language="english",
|
| 151 |
+
cefr_level="B1",
|
| 152 |
+
topic="general conversation",
|
| 153 |
):
|
| 154 |
+
self.target_language = target_language.lower()
|
| 155 |
+
self.native_language = native_language.lower()
|
| 156 |
+
self.cefr_level = cefr_level.upper()
|
| 157 |
+
self.topic = topic
|
| 158 |
self.history: List[ConversationTurn] = []
|
| 159 |
|
|
|
|
| 160 |
load_partner_lm()
|
| 161 |
+
load_whisper_pipe()
|
| 162 |
|
| 163 |
+
################################################################
|
| 164 |
+
# SYSTEM PROMPT
|
| 165 |
+
################################################################
|
| 166 |
|
| 167 |
+
def _build_system_prompt(self):
|
| 168 |
base = (
|
| 169 |
f"You are a friendly conversation partner speaking {self.target_language}. "
|
| 170 |
f"Reply ONLY in {self.target_language}. "
|
|
|
|
|
|
|
|
|
|
| 171 |
f"Adapt your language to CEFR level {self.cefr_level}. "
|
| 172 |
f"{CONTROL_PROMPTS.get(self.cefr_level, '')} "
|
| 173 |
+
f"Topic of conversation: {self.topic}. "
|
| 174 |
+
"Give 1β3 short natural sentences and ALWAYS end with 1 follow-up question. "
|
| 175 |
+
"Never mention AI, assistants, grammar explanations, or meta commentary."
|
|
|
|
|
|
|
|
|
|
| 176 |
)
|
|
|
|
|
|
|
| 177 |
return base
|
| 178 |
|
| 179 |
+
################################################################
|
| 180 |
+
# GENERATION
|
| 181 |
+
################################################################
|
| 182 |
+
|
| 183 |
def _generate_lm(self, user_text: str) -> str:
|
| 184 |
tok, model = load_partner_lm()
|
| 185 |
|
|
|
|
| 186 |
messages = [
|
| 187 |
+
{"role": "system", "content": self._build_system_prompt()},
|
| 188 |
+
{"role": "user", "content": user_text},
|
|
|
|
|
|
|
|
|
|
| 189 |
]
|
| 190 |
|
| 191 |
prompt = tok.apply_chat_template(
|
| 192 |
+
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
| 193 |
)
|
| 194 |
|
| 195 |
enc = tok(prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 197 |
with torch.no_grad():
|
| 198 |
out = model.generate(
|
| 199 |
**enc,
|
| 200 |
+
max_new_tokens=160,
|
| 201 |
temperature=0.8,
|
| 202 |
top_p=0.95,
|
|
|
|
| 203 |
repetition_penalty=1.15,
|
|
|
|
| 204 |
do_sample=True,
|
| 205 |
+
pad_token_id=tok.eos_token_id,
|
| 206 |
)
|
| 207 |
|
| 208 |
+
raw = tok.decode(out[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
# Remove echo
|
| 211 |
+
cleaned = clean_assistant_reply(raw)
|
| 212 |
+
return cleaned
|
| 213 |
|
| 214 |
+
################################################################
|
| 215 |
# PUBLIC REPLY API
|
| 216 |
+
################################################################
|
| 217 |
|
| 218 |
+
def reply(self, user_text: str, input_lang="german"):
|
|
|
|
| 219 |
self.history.append(ConversationTurn("user", user_text))
|
| 220 |
|
| 221 |
assistant_text = self._generate_lm(user_text)
|
| 222 |
self.history.append(ConversationTurn("assistant", assistant_text))
|
| 223 |
|
| 224 |
explanation = self._generate_explanation(assistant_text)
|
| 225 |
+
audio_bytes = self.text_to_speech(assistant_text)
|
| 226 |
|
| 227 |
return {
|
| 228 |
"reply_text": assistant_text,
|
| 229 |
"explanation": explanation,
|
| 230 |
+
"audio": audio_bytes,
|
| 231 |
}
|
| 232 |
|
| 233 |
+
################################################################
|
| 234 |
+
# SHORT EXPLANATION
|
| 235 |
+
################################################################
|
| 236 |
|
| 237 |
def _generate_explanation(self, assistant_text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
tok, model = load_partner_lm()
|
| 239 |
+
|
| 240 |
prompt = (
|
| 241 |
f"Rewrite the meaning of this {self.target_language} sentence "
|
| 242 |
+
f"in ONE short {self.native_language} sentence:\n{assistant_text}"
|
|
|
|
|
|
|
|
|
|
| 243 |
)
|
| 244 |
|
| 245 |
enc = tok(prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 252 |
pad_token_id=tok.eos_token_id,
|
| 253 |
)
|
| 254 |
|
| 255 |
+
decoded = tok.decode(out[0], skip_special_tokens=True)
|
| 256 |
+
cleaned = decoded.replace(prompt, "").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
+
# keep only the first sentence
|
| 259 |
+
parts = re.split(r"(?<=[.!?])\s+", cleaned)
|
| 260 |
+
return parts[0].strip()
|
| 261 |
|
| 262 |
+
################################################################
|
| 263 |
+
# TRANSCRIPTION β SINGLE VALID VERSION
|
| 264 |
+
################################################################
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
def transcribe(self, audio_segment, spoken_lang=None):
|
| 267 |
+
"""Transcribe using Transformers Whisper."""
|
| 268 |
+
pipe = load_whisper_pipe()
|
| 269 |
+
|
| 270 |
audio = np.array(audio_segment.get_array_of_samples()).astype("float32")
|
| 271 |
+
audio = audio / max(np.max(np.abs(audio)), 1e-6)
|
| 272 |
+
|
| 273 |
+
result = pipe(audio)
|
| 274 |
text = result.get("text", "").strip()
|
| 275 |
+
|
| 276 |
return text, spoken_lang or "unknown", 1.0
|
| 277 |
|
| 278 |
+
################################################################
|
| 279 |
+
# TTS β gTTS
|
| 280 |
+
################################################################
|
| 281 |
|
| 282 |
def text_to_speech(self, text: str) -> Optional[bytes]:
|
|
|
|
| 283 |
if not text:
|
| 284 |
return None
|
| 285 |
try:
|
| 286 |
+
lang = GTTS_LANG.get(self.target_language, "en")
|
| 287 |
+
tts = gTTS(text=text, lang=lang)
|
| 288 |
buf = io.BytesIO()
|
| 289 |
tts.write_to_fp(buf)
|
| 290 |
return buf.getvalue()
|
|
|
|
| 292 |
return None
|
| 293 |
|
| 294 |
|
| 295 |
+
################################################################
|
| 296 |
# END OF FILE
|
| 297 |
+
################################################################
|
|
|
|
|
|