Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import Trainer, TrainingArguments, Tacotron2ForConditionalGeneration
|
| 3 |
+
|
| 4 |
+
# تحميل البيانات من Hugging Face Datasets
|
| 5 |
+
dataset = load_dataset("your_username/sada2022")
|
| 6 |
+
najdi_data = dataset.filter(lambda example: example['SpeakerDialect'] == 'Najdi')
|
| 7 |
+
|
| 8 |
+
# إعداد النموذج والمعالج
|
| 9 |
+
model = Tacotron2ForConditionalGeneration.from_pretrained("facebook/tacotron2")
|
| 10 |
+
|
| 11 |
+
# إعداد التدريب
|
| 12 |
+
training_args = TrainingArguments(output_dir="./results", per_device_train_batch_size=16, num_train_epochs=3)
|
| 13 |
+
trainer = Trainer(model=model, args=training_args, train_dataset=najdi_data)
|
| 14 |
+
|
| 15 |
+
# بدء التدريب
|
| 16 |
+
trainer.train()
|