lapa / app.py
iamthewalrus67's picture
Add spaces decorator
c6ac4a0
raw
history blame
2.76 kB
import os
import subprocess
import threading
subprocess.check_call([os.sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MODEL_ID = "le-llm/gemma-3-12b-it-reasoning"
SYSTEM_PROMPT = (
"You are a helpful, concise assistant. Only write replies as the Assistant. Do not invent or continue User messages."
)
def load_model():
"""Lazy-load model & tokenizer (for zeroGPU)."""
device = "cuda"# if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
)
return model, tokenizer, device
@spaces.GPU
def respond(
message,
history: list[dict[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Load model/tokenizer each request → allows zeroGPU to cold start & then release
model, tokenizer, device = load_model()
# Build conversation
messages = [{"role": "system", "content": system_message}] + history + [
{"role": "user", "content": message}
]
input_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(input_text, return_tensors="pt").to(device)
# Streamer setup
streamer = TextIteratorStreamer(
tokenizer,
skip_special_tokens=True,
skip_prompt=True
)
# Run model.generate in background thread
generation_kwargs = dict(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield tokens as they come in
partial_output = ""
for new_text in streamer:
partial_output += new_text
yield partial_output
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Textbox(value=SYSTEM_PROMPT, label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
chatbot.launch()