Spaces:
Running
Running
Upload app3.py
Browse files
app3.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import time
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import os
|
| 6 |
+
import datetime
|
| 7 |
+
import feedparser
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import faiss, pickle
|
| 10 |
+
import aiohttp
|
| 11 |
+
import asyncio
|
| 12 |
+
|
| 13 |
+
# -------------------
|
| 14 |
+
# Load prebuilt index
|
| 15 |
+
# -------------------
|
| 16 |
+
import sqlite3
|
| 17 |
+
|
| 18 |
+
def init_cache_db():
|
| 19 |
+
conn = sqlite3.connect("query_cache.db")
|
| 20 |
+
c = conn.cursor()
|
| 21 |
+
c.execute("""
|
| 22 |
+
CREATE TABLE IF NOT EXISTS cache (
|
| 23 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 24 |
+
query TEXT UNIQUE,
|
| 25 |
+
answer TEXT,
|
| 26 |
+
embedding BLOB,
|
| 27 |
+
frequency INTEGER DEFAULT 1
|
| 28 |
+
)
|
| 29 |
+
""")
|
| 30 |
+
conn.commit()
|
| 31 |
+
return conn
|
| 32 |
+
|
| 33 |
+
cache_conn = init_cache_db()
|
| 34 |
+
|
| 35 |
+
def store_in_cache(query, answer, embedding):
|
| 36 |
+
c = cache_conn.cursor()
|
| 37 |
+
c.execute("""
|
| 38 |
+
INSERT OR REPLACE INTO cache (query, answer, embedding, frequency)
|
| 39 |
+
VALUES (?, ?, ?, COALESCE(
|
| 40 |
+
(SELECT frequency FROM cache WHERE query=?), 0
|
| 41 |
+
) + 1)
|
| 42 |
+
""",
|
| 43 |
+
(query, answer, embedding.tobytes(), query)
|
| 44 |
+
)
|
| 45 |
+
cache_conn.commit()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def search_cache(query, embed_model, threshold=0.85):
|
| 49 |
+
q_emb = embed_model.encode([query], convert_to_numpy=True)[0]
|
| 50 |
+
|
| 51 |
+
c = cache_conn.cursor()
|
| 52 |
+
c.execute("SELECT query, answer, embedding, frequency FROM cache")
|
| 53 |
+
rows = c.fetchall()
|
| 54 |
+
|
| 55 |
+
best_sim = -1
|
| 56 |
+
best_row = None
|
| 57 |
+
|
| 58 |
+
for qry, ans, emb_blob, freq in rows:
|
| 59 |
+
emb = np.frombuffer(emb_blob, dtype=np.float32)
|
| 60 |
+
emb = emb.reshape(-1)
|
| 61 |
+
|
| 62 |
+
sim = np.dot(q_emb, emb) / (np.linalg.norm(q_emb) * np.linalg.norm(emb))
|
| 63 |
+
|
| 64 |
+
if sim > threshold and sim > best_sim:
|
| 65 |
+
best_sim = sim
|
| 66 |
+
best_row = (qry, ans, freq)
|
| 67 |
+
|
| 68 |
+
if best_row:
|
| 69 |
+
return best_row[1] # return only answer
|
| 70 |
+
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@st.cache_resource
|
| 75 |
+
def load_index():
|
| 76 |
+
faiss_path = hf_hub_download(
|
| 77 |
+
repo_id="krishnasimha/health-chatbot-data",
|
| 78 |
+
filename="health_index.faiss",
|
| 79 |
+
repo_type="dataset"
|
| 80 |
+
)
|
| 81 |
+
pkl_path = hf_hub_download(
|
| 82 |
+
repo_id="krishnasimha/health-chatbot-data",
|
| 83 |
+
filename="health_metadata.pkl",
|
| 84 |
+
repo_type="dataset"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
index = faiss.read_index(faiss_path)
|
| 88 |
+
with open(pkl_path, "rb") as f:
|
| 89 |
+
metadata = pickle.load(f)
|
| 90 |
+
|
| 91 |
+
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 92 |
+
return index, metadata, embed_model
|
| 93 |
+
|
| 94 |
+
index, metadata, embed_model = load_index()
|
| 95 |
+
|
| 96 |
+
# -------------------
|
| 97 |
+
# FAISS Benchmark
|
| 98 |
+
# -------------------
|
| 99 |
+
def benchmark_faiss(n_queries=100, k=3):
|
| 100 |
+
queries = ["What is diabetes?", "How to prevent malaria?", "Symptoms of dengue?"]
|
| 101 |
+
query_embs = embed_model.encode(queries, convert_to_numpy=True)
|
| 102 |
+
|
| 103 |
+
times = []
|
| 104 |
+
for _ in range(n_queries):
|
| 105 |
+
q = query_embs[np.random.randint(0, len(query_embs))].reshape(1, -1)
|
| 106 |
+
start = time.time()
|
| 107 |
+
D, I = index.search(q, k)
|
| 108 |
+
times.append(time.time() - start)
|
| 109 |
+
|
| 110 |
+
avg_time = np.mean(times) * 1000
|
| 111 |
+
st.sidebar.write(f"⚡ FAISS Benchmark: {avg_time:.2f} ms/query over {n_queries} queries")
|
| 112 |
+
|
| 113 |
+
# -------------------
|
| 114 |
+
# Chat session management
|
| 115 |
+
# -------------------
|
| 116 |
+
if "chats" not in st.session_state:
|
| 117 |
+
st.session_state.chats = {}
|
| 118 |
+
if "current_chat" not in st.session_state:
|
| 119 |
+
st.session_state.current_chat = "New Chat 1"
|
| 120 |
+
st.session_state.chats["New Chat 1"] = [
|
| 121 |
+
{"role": "system", "content": "You are a helpful public health awareness chatbot."}
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
st.sidebar.header("Chat Manager")
|
| 125 |
+
|
| 126 |
+
if st.sidebar.button("➕ New Chat"):
|
| 127 |
+
chat_count = len(st.session_state.chats) + 1
|
| 128 |
+
new_chat_name = f"New Chat {chat_count}"
|
| 129 |
+
st.session_state.chats[new_chat_name] = [
|
| 130 |
+
{"role": "system", "content": "You are a helpful public health awareness chatbot."}
|
| 131 |
+
]
|
| 132 |
+
st.session_state.current_chat = new_chat_name
|
| 133 |
+
|
| 134 |
+
benchmark_faiss()
|
| 135 |
+
|
| 136 |
+
chat_list = list(st.session_state.chats.keys())
|
| 137 |
+
selected_chat = st.sidebar.selectbox("Your chats:", chat_list, index=chat_list.index(st.session_state.current_chat))
|
| 138 |
+
st.session_state.current_chat = selected_chat
|
| 139 |
+
|
| 140 |
+
new_name = st.sidebar.text_input("Rename Chat:", st.session_state.current_chat)
|
| 141 |
+
if new_name and new_name != st.session_state.current_chat:
|
| 142 |
+
if new_name not in st.session_state.chats:
|
| 143 |
+
st.session_state.chats[new_name] = st.session_state.chats.pop(st.session_state.current_chat)
|
| 144 |
+
st.session_state.current_chat = new_name
|
| 145 |
+
|
| 146 |
+
# -------------------
|
| 147 |
+
# RSS News Fetcher (async)
|
| 148 |
+
# -------------------
|
| 149 |
+
RSS_URL = "https://news.google.com/rss/search?q=health+disease+awareness&hl=en-IN&gl=IN&ceid=IN:en"
|
| 150 |
+
|
| 151 |
+
async def fetch_rss_url(url):
|
| 152 |
+
async with aiohttp.ClientSession() as session:
|
| 153 |
+
async with session.get(url) as resp:
|
| 154 |
+
return await resp.text()
|
| 155 |
+
|
| 156 |
+
def fetch_news():
|
| 157 |
+
raw_xml = asyncio.run(fetch_rss_url(RSS_URL))
|
| 158 |
+
feed = feedparser.parse(raw_xml)
|
| 159 |
+
articles = []
|
| 160 |
+
for entry in feed.entries[:5]:
|
| 161 |
+
articles.append({
|
| 162 |
+
"title": entry.title,
|
| 163 |
+
"link": entry.link,
|
| 164 |
+
"published": entry.published
|
| 165 |
+
})
|
| 166 |
+
return articles
|
| 167 |
+
|
| 168 |
+
def update_news_hourly():
|
| 169 |
+
now = datetime.datetime.now()
|
| 170 |
+
if "last_news_update" not in st.session_state or (now - st.session_state.last_news_update).seconds > 3600:
|
| 171 |
+
st.session_state.last_news_update = now
|
| 172 |
+
st.session_state.news_articles = fetch_news()
|
| 173 |
+
|
| 174 |
+
# -------------------
|
| 175 |
+
# Async Together API
|
| 176 |
+
# -------------------
|
| 177 |
+
async def async_together_chat(messages):
|
| 178 |
+
url = "https://api.together.xyz/v1/chat/completions"
|
| 179 |
+
headers = {
|
| 180 |
+
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}",
|
| 181 |
+
"Content-Type": "application/json",
|
| 182 |
+
}
|
| 183 |
+
payload = {
|
| 184 |
+
"model": "deepseek-ai/DeepSeek-V3",
|
| 185 |
+
"messages": messages,
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
async with aiohttp.ClientSession() as session:
|
| 189 |
+
async with session.post(url, headers=headers, json=payload) as resp:
|
| 190 |
+
result = await resp.json()
|
| 191 |
+
return result["choices"][0]["message"]["content"]
|
| 192 |
+
|
| 193 |
+
# -------------------
|
| 194 |
+
# Query function (async call inside)
|
| 195 |
+
# -------------------
|
| 196 |
+
def retrieve_answer(query, k=3):
|
| 197 |
+
|
| 198 |
+
# 1️⃣ Try fetch from cache
|
| 199 |
+
cached_answer = search_cache(query, embed_model)
|
| 200 |
+
if cached_answer:
|
| 201 |
+
st.sidebar.success("⚡ Retrieved from cache")
|
| 202 |
+
return cached_answer, [] # no FAISS sources
|
| 203 |
+
|
| 204 |
+
# 2️⃣ If no cache → normal FAISS pipeline
|
| 205 |
+
query_emb = embed_model.encode([query], convert_to_numpy=True)
|
| 206 |
+
D, I = index.search(query_emb, k)
|
| 207 |
+
retrieved = [metadata["texts"][i] for i in I[0]]
|
| 208 |
+
sources = [metadata["sources"][i] for i in I[0]]
|
| 209 |
+
context = "\n".join(retrieved)
|
| 210 |
+
|
| 211 |
+
user_message = {
|
| 212 |
+
"role": "user",
|
| 213 |
+
"content": f"Answer based on the context below:\n\n{context}\n\nQuestion: {query}"
|
| 214 |
+
}
|
| 215 |
+
st.session_state.chats[st.session_state.current_chat].append(user_message)
|
| 216 |
+
|
| 217 |
+
answer = asyncio.run(async_together_chat(st.session_state.chats[st.session_state.current_chat]))
|
| 218 |
+
|
| 219 |
+
# 3️⃣ Save the new query + embedding + answer into cache
|
| 220 |
+
store_in_cache(query, answer, query_emb[0])
|
| 221 |
+
|
| 222 |
+
st.session_state.chats[st.session_state.current_chat].append({"role": "assistant", "content": answer})
|
| 223 |
+
return answer, sources
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
# -------------------
|
| 227 |
+
# Background task for news refresh
|
| 228 |
+
# -------------------
|
| 229 |
+
async def background_news_updater():
|
| 230 |
+
while True:
|
| 231 |
+
st.session_state.news_articles = fetch_news()
|
| 232 |
+
await asyncio.sleep(3600) # refresh every hour
|
| 233 |
+
|
| 234 |
+
if "news_task" not in st.session_state:
|
| 235 |
+
loop = asyncio.new_event_loop()
|
| 236 |
+
asyncio.set_event_loop(loop)
|
| 237 |
+
st.session_state.news_task = loop.create_task(background_news_updater())
|
| 238 |
+
|
| 239 |
+
# -------------------
|
| 240 |
+
# Streamlit UI
|
| 241 |
+
# -------------------
|
| 242 |
+
st.title(st.session_state.current_chat)
|
| 243 |
+
|
| 244 |
+
update_news_hourly()
|
| 245 |
+
st.subheader("📰 Latest Health Updates")
|
| 246 |
+
if "news_articles" in st.session_state:
|
| 247 |
+
for art in st.session_state.news_articles:
|
| 248 |
+
st.markdown(f"**{art['title']}** \n[Read more]({art['link']}) \n*Published: {art['published']}*")
|
| 249 |
+
st.write("---")
|
| 250 |
+
|
| 251 |
+
user_query = st.text_input("Ask me about health, prevention, or awareness:")
|
| 252 |
+
|
| 253 |
+
if user_query:
|
| 254 |
+
with st.spinner("Searching knowledge base..."):
|
| 255 |
+
answer, sources = retrieve_answer(user_query)
|
| 256 |
+
st.write("### 💡 Answer")
|
| 257 |
+
st.write(answer)
|
| 258 |
+
|
| 259 |
+
st.write("### 📖 Sources")
|
| 260 |
+
for src in sources:
|
| 261 |
+
st.write(f"- {src}")
|
| 262 |
+
|
| 263 |
+
for msg in st.session_state.chats[st.session_state.current_chat]:
|
| 264 |
+
if msg["role"] == "user":
|
| 265 |
+
st.write(f"🧑 **You:** {msg['content']}")
|
| 266 |
+
elif msg["role"] == "assistant":
|
| 267 |
+
st.write(f"🤖 **Bot:** {msg['content']}")
|