File size: 15,243 Bytes
92ca83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# app.py
import os
import time
import datetime
import asyncio
import sqlite3
import pickle

import streamlit as st
import numpy as np
import pandas as pd
import feedparser
import aiohttp

from sentence_transformers import SentenceTransformer
from sentence_transformers import CrossEncoder
from huggingface_hub import hf_hub_download

# Optional S3 support
try:
    import boto3
    BOTO3_AVAILABLE = True
except Exception:
    BOTO3_AVAILABLE = False

import faiss

# -------------------------
# Initialize DB & helpers
# -------------------------
DB_PATH = "query_cache.db"

def init_cache_db():
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute("""
        CREATE TABLE IF NOT EXISTS cache (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            query TEXT UNIQUE,
            answer TEXT,
            embedding BLOB,
            frequency INTEGER DEFAULT 1
        )
    """)
    conn.commit()
    conn.close()

def init_export_logs():
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute("""
        CREATE TABLE IF NOT EXISTS export_logs (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            exported_on TEXT,
            file_name TEXT
        )
    """)
    conn.commit()
    conn.close()

init_cache_db()
init_export_logs()

def get_db_connection():
    return sqlite3.connect(DB_PATH)

# -------------------------
# Cache store/search
# -------------------------
def store_in_cache(query, answer, embedding):
    conn = get_db_connection()
    c = conn.cursor()
    c.execute("""
        INSERT OR REPLACE INTO cache (query, answer, embedding, frequency)
        VALUES (?, ?, ?, COALESCE(
            (SELECT frequency FROM cache WHERE query=?), 0
        ) + 1)
    """, (query, answer, embedding.tobytes(), query))
    conn.commit()
    conn.close()

def search_cache(query, embed_model, threshold=0.85):
    q_emb = embed_model.encode([query], convert_to_numpy=True)[0]

    conn = get_db_connection()
    c = conn.cursor()
    c.execute("SELECT query, answer, embedding, frequency FROM cache")
    rows = c.fetchall()
    conn.close()

    best_sim = -1
    best_row = None

    for qry, ans, emb_blob, freq in rows:
        try:
            emb = np.frombuffer(emb_blob, dtype=np.float32)
        except Exception:
            continue
        emb = emb.reshape(-1)
        sim = np.dot(q_emb, emb) / (np.linalg.norm(q_emb) * np.linalg.norm(emb) + 1e-12)
        if sim > threshold and sim > best_sim:
            best_sim = sim
            best_row = (qry, ans, freq)

    if best_row:
        return best_row[1]
    return None

# -------------------------
# Exports
# -------------------------
def export_cache_to_excel():
    conn = get_db_connection()
    df = pd.read_sql_query("SELECT * FROM cache", conn)
    conn.close()
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    file_name = f"cache_export_{timestamp}.xlsx"
    df.to_excel(file_name, index=False)
    # log export
    conn = get_db_connection()
    c = conn.cursor()
    c.execute("INSERT INTO export_logs (exported_on, file_name) VALUES (?, ?)",
              (datetime.datetime.now().isoformat(), file_name))
    conn.commit()
    conn.close()
    return file_name

def export_cache_to_sql():
    conn = get_db_connection()
    dump_path = f"cache_dump_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.sql"
    with open(dump_path, "w", encoding="utf-8") as f:
        for line in conn.iterdump():
            f.write("%s\n" % line)
    conn.close()
    # log export
    conn = get_db_connection()
    c = conn.cursor()
    c.execute("INSERT INTO export_logs (exported_on, file_name) VALUES (?, ?)",
              (datetime.datetime.now().isoformat(), dump_path))
    conn.commit()
    conn.close()
    return dump_path

# -------------------------
# Optional: S3 upload
# -------------------------
def upload_file_to_s3(local_path, bucket_name, object_name=None):
    if not BOTO3_AVAILABLE:
        return False, "boto3 not installed"
    if object_name is None:
        object_name = os.path.basename(local_path)
    try:
        s3 = boto3.client(
            "s3",
            aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
            aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"),
            region_name=os.environ.get("AWS_DEFAULT_REGION")
        )
        s3.upload_file(local_path, bucket_name, object_name)
        return True, f"s3://{bucket_name}/{object_name}"
    except Exception as e:
        return False, str(e)

# -------------------------
# Load FAISS index
# -------------------------
@st.cache_resource
def load_index():
    faiss_path = hf_hub_download("krishnasimha/health-chatbot-data", "health_index.faiss", repo_type="dataset")
    pkl_path = hf_hub_download("krishnasimha/health-chatbot-data", "health_metadata.pkl", repo_type="dataset")
    index = faiss.read_index(faiss_path)
    with open(pkl_path, "rb") as f:
        metadata = pickle.load(f)
    embed_model = SentenceTransformer("all-MiniLM-L6-v2")
    return index, metadata, embed_model

index, metadata, embed_model = load_index()

# -------------------------
# Load Reranker (Cross-Encoder)
# -------------------------
@st.cache_resource
def load_reranker():
    # Cross-encoder β€” good speed/quality tradeoff
    return CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")

reranker = load_reranker()

# -------------------------
# FAISS benchmark
# -------------------------
def benchmark_faiss(n_queries=100, k=3):
    queries = ["What is diabetes?", "How to prevent malaria?", "Symptoms of dengue?"]
    query_embs = embed_model.encode(queries, convert_to_numpy=True)
    times = []
    for _ in range(n_queries):
        q = query_embs[np.random.randint(0, len(query_embs))].reshape(1, -1)
        start = time.time()
        D, I = index.search(q, k)
        times.append(time.time() - start)
    avg_time = np.mean(times) * 1000
    st.sidebar.write(f"⚑ FAISS Benchmark: {avg_time:.2f} ms/query over {n_queries} queries")

# -------------------------
# RSS / News
# -------------------------
RSS_URL = "https://news.google.com/rss/search?q=health+disease+awareness&hl=en-IN&gl=IN&ceid=IN:en"

async def fetch_rss_url(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as resp:
            return await resp.text()

def fetch_news():
    try:
        raw_xml = asyncio.run(fetch_rss_url(RSS_URL))
        feed = feedparser.parse(raw_xml)
        articles = [{"title": e.get("title",""), "link": e.get("link",""), "published": e.get("published","")} for e in feed.entries[:5]]
        return articles
    except Exception:
        return []

def update_news_hourly():
    now = datetime.datetime.now()
    if "last_news_update" not in st.session_state or (now - st.session_state.last_news_update).seconds > 3600:
        st.session_state.last_news_update = now
        st.session_state.news_articles = fetch_news()

# -------------------------
# Together API
# -------------------------
async def async_together_chat(messages):
    url = "https://api.together.xyz/v1/chat/completions"
    headers = {
        "Authorization": f"Bearer {os.environ.get('TOGETHER_API_KEY','')}",
        "Content-Type": "application/json",
    }
    payload = {"model": "deepseek-ai/DeepSeek-V3", "messages": messages}
    async with aiohttp.ClientSession() as session:
        async with session.post(url, headers=headers, json=payload) as resp:
            result = await resp.json()
            return result["choices"][0]["message"]["content"]

# -------------------------
# Retrieve answer (with reranker)
# -------------------------
def retrieve_answer(query, k=3):
    cached_answer = search_cache(query, embed_model)
    if cached_answer:
        st.sidebar.success("⚑ Retrieved from cache")
        return cached_answer, []

    # Encode query
    query_emb = embed_model.encode([query], convert_to_numpy=True)

    # 1) FAISS retrieves more candidates (we fetch 10 for reranking)
    fetch_k = max(k, 10)
    D, I = index.search(query_emb, fetch_k)

    retrieved = [metadata["texts"][i] for i in I[0]]
    sources = [metadata["sources"][i] for i in I[0]]

    # -----------------------------
    # Cross-Encoder Reranking step
    # -----------------------------
    try:
        pairs = [[query, chunk] for chunk in retrieved]
        scores = reranker.predict(pairs)
        reranked = sorted(zip(scores, retrieved, sources), key=lambda x: x[0], reverse=True)
        top_reranked = reranked[:k]
        top_chunks = [c for _, c, _ in top_reranked]
        top_sources = [s for _, _, s in top_reranked]
        context = "\n".join(top_chunks)
        sources = top_sources
    except Exception:
        # fallback: if reranker fails for any reason, use the original retrieved top-k
        context = "\n".join(retrieved[:k])
        sources = sources[:k]

    user_message = {"role":"user", "content": f"Answer based on context:\n{context}\n\nQuestion: {query}"}
    st.session_state.chats[st.session_state.current_chat].append(user_message)

    try:
        answer = asyncio.run(async_together_chat(st.session_state.chats[st.session_state.current_chat]))
    except Exception as e:
        answer = f"Error: {e}"

    try:
        store_in_cache(query, answer, query_emb[0])
    except Exception:
        pass

    st.session_state.chats[st.session_state.current_chat].append({"role": "assistant", "content": answer})
    return answer, sources

# -------------------------
# Background news
# -------------------------
async def background_news_updater():
    while True:
        st.session_state.news_articles = fetch_news()
        await asyncio.sleep(3600)

if "news_task" not in st.session_state:
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    st.session_state.news_task = loop.create_task(background_news_updater())

# -------------------------
# Streamlit UI + Chat manager
# -------------------------
if "chats" not in st.session_state:
    st.session_state.chats = {}
if "current_chat" not in st.session_state:
    st.session_state.current_chat = "New Chat 1"
    st.session_state.chats["New Chat 1"] = [{"role": "system", "content": "You are a helpful public health chatbot."}]

st.sidebar.header("Chat Manager")
if st.sidebar.button("βž• New Chat"):
    chat_count = len(st.session_state.chats) + 1
    new_chat_name = f"New Chat {chat_count}"
    st.session_state.chats[new_chat_name] = [{"role": "system", "content": "You are a helpful public health chatbot."}]
    st.session_state.current_chat = new_chat_name

benchmark_faiss()

chat_list = list(st.session_state.chats.keys())
selected_chat = st.sidebar.selectbox("Your chats:", chat_list, index=chat_list.index(st.session_state.current_chat))
st.session_state.current_chat = selected_chat

new_name = st.sidebar.text_input("Rename Chat:", st.session_state.current_chat)
if new_name and new_name != st.session_state.current_chat:
    if new_name not in st.session_state.chats:
        st.session_state.chats[new_name] = st.session_state.chats.pop(st.session_state.current_chat)
        st.session_state.current_chat = new_name

# -------------------------
# Admin Panel
# -------------------------
query_params = st.query_params
is_admin_mode = (query_params.get("admin") == "1")

def rerun_app():
    st.session_state['__rerun'] = not st.session_state.get('__rerun', False)

if is_admin_mode or st.session_state.get("is_admin", False):
    st.sidebar.markdown("---")
    st.sidebar.subheader("πŸ” Admin Panel (dev only)")
    ADMIN_PASSWORD = os.environ.get("ADMIN_PASSWORD", "")
    if "is_admin" not in st.session_state:
        st.session_state.is_admin = False

    if st.session_state.is_admin:
        st.sidebar.success("Admin authenticated")
        if st.sidebar.button("πŸšͺ Logout Admin"):
            st.session_state.is_admin = False
            rerun_app()
    else:
        admin_input = st.sidebar.text_input("Enter admin password:", type="password")
        if st.sidebar.button("Login"):
            if admin_input == ADMIN_PASSWORD and ADMIN_PASSWORD != "":
                st.session_state.is_admin = True
                st.sidebar.success("Admin authenticated")
                rerun_app()
            else:
                st.sidebar.error("Wrong password or ADMIN_PASSWORD not set")

    if st.session_state.is_admin:
        if st.sidebar.button("⬇️ Export Query Cache to Excel"):
            file_path = export_cache_to_excel()
            st.sidebar.success(f"Exported: {file_path}")
            with open(file_path, "rb") as f:
                st.sidebar.download_button("Download Excel", f, file_name=file_path, mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")

        if st.sidebar.button("πŸ’Ύ Export SQL Dump"):
            dump_path = export_cache_to_sql()
            st.sidebar.success(f"SQL dump created: {dump_path}")
            with open(dump_path, "rb") as f:
                st.sidebar.download_button("Download SQL Dump", f, file_name=dump_path, mime="application/sql")

        s3_bucket = os.environ.get("S3_BUCKET_NAME", "")
        if s3_bucket and BOTO3_AVAILABLE:
            if st.sidebar.button("πŸ“€ Upload last Excel to S3"):
                excel_files = sorted([f for f in os.listdir(".") if f.startswith("cache_export_") and f.endswith(".xlsx")])
                if excel_files:
                    last_file = excel_files[-1]
                    ok, msg = upload_file_to_s3(last_file, s3_bucket)
                    if ok:
                        st.sidebar.success(f"Uploaded: {msg}")
                    else:
                        st.sidebar.error(f"S3 upload failed: {msg}")
                else:
                    st.sidebar.warning("No Excel export file found")
        elif not BOTO3_AVAILABLE:
            st.sidebar.info("S3 upload: boto3 not installed")
        elif not s3_bucket:
            st.sidebar.info("S3 upload disabled: set S3_BUCKET_NAME env var")

        if st.sidebar.checkbox("πŸ“œ Show Export History"):
            conn = get_db_connection()
            logs = pd.read_sql_query("SELECT * FROM export_logs ORDER BY id DESC", conn)
            conn.close()
            st.sidebar.write(logs)

# -------------------------
# Main UI: News + Chat
# -------------------------
st.title(st.session_state.current_chat)

update_news_hourly()
st.subheader("πŸ“° Latest Health Updates")
if "news_articles" in st.session_state:
    for art in st.session_state.news_articles:
        st.markdown(f"**{art['title']}**  \n[Read more]({art['link']})  \n*Published: {art['published']}*")
        st.write("---")

user_query = st.text_input("Ask me about health, prevention, or awareness:")

if user_query:
    with st.spinner("Searching knowledge base..."):
        answer, sources = retrieve_answer(user_query)
    st.write("### πŸ’‘ Answer")
    st.write(answer)

    st.write("### πŸ“– Sources")
    for src in sources:
        st.write(f"- {src}")

# render chat history
for msg in st.session_state.chats[st.session_state.current_chat]:
    if msg["role"] == "user":
        st.write(f"πŸ§‘ **You:** {msg['content']}")
    elif msg["role"] == "assistant":
        st.write(f"πŸ€– **Bot:** {msg['content']}")