Spaces:
Running
Running
File size: 15,243 Bytes
92ca83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# app.py
import os
import time
import datetime
import asyncio
import sqlite3
import pickle
import streamlit as st
import numpy as np
import pandas as pd
import feedparser
import aiohttp
from sentence_transformers import SentenceTransformer
from sentence_transformers import CrossEncoder
from huggingface_hub import hf_hub_download
# Optional S3 support
try:
import boto3
BOTO3_AVAILABLE = True
except Exception:
BOTO3_AVAILABLE = False
import faiss
# -------------------------
# Initialize DB & helpers
# -------------------------
DB_PATH = "query_cache.db"
def init_cache_db():
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute("""
CREATE TABLE IF NOT EXISTS cache (
id INTEGER PRIMARY KEY AUTOINCREMENT,
query TEXT UNIQUE,
answer TEXT,
embedding BLOB,
frequency INTEGER DEFAULT 1
)
""")
conn.commit()
conn.close()
def init_export_logs():
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute("""
CREATE TABLE IF NOT EXISTS export_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
exported_on TEXT,
file_name TEXT
)
""")
conn.commit()
conn.close()
init_cache_db()
init_export_logs()
def get_db_connection():
return sqlite3.connect(DB_PATH)
# -------------------------
# Cache store/search
# -------------------------
def store_in_cache(query, answer, embedding):
conn = get_db_connection()
c = conn.cursor()
c.execute("""
INSERT OR REPLACE INTO cache (query, answer, embedding, frequency)
VALUES (?, ?, ?, COALESCE(
(SELECT frequency FROM cache WHERE query=?), 0
) + 1)
""", (query, answer, embedding.tobytes(), query))
conn.commit()
conn.close()
def search_cache(query, embed_model, threshold=0.85):
q_emb = embed_model.encode([query], convert_to_numpy=True)[0]
conn = get_db_connection()
c = conn.cursor()
c.execute("SELECT query, answer, embedding, frequency FROM cache")
rows = c.fetchall()
conn.close()
best_sim = -1
best_row = None
for qry, ans, emb_blob, freq in rows:
try:
emb = np.frombuffer(emb_blob, dtype=np.float32)
except Exception:
continue
emb = emb.reshape(-1)
sim = np.dot(q_emb, emb) / (np.linalg.norm(q_emb) * np.linalg.norm(emb) + 1e-12)
if sim > threshold and sim > best_sim:
best_sim = sim
best_row = (qry, ans, freq)
if best_row:
return best_row[1]
return None
# -------------------------
# Exports
# -------------------------
def export_cache_to_excel():
conn = get_db_connection()
df = pd.read_sql_query("SELECT * FROM cache", conn)
conn.close()
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f"cache_export_{timestamp}.xlsx"
df.to_excel(file_name, index=False)
# log export
conn = get_db_connection()
c = conn.cursor()
c.execute("INSERT INTO export_logs (exported_on, file_name) VALUES (?, ?)",
(datetime.datetime.now().isoformat(), file_name))
conn.commit()
conn.close()
return file_name
def export_cache_to_sql():
conn = get_db_connection()
dump_path = f"cache_dump_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.sql"
with open(dump_path, "w", encoding="utf-8") as f:
for line in conn.iterdump():
f.write("%s\n" % line)
conn.close()
# log export
conn = get_db_connection()
c = conn.cursor()
c.execute("INSERT INTO export_logs (exported_on, file_name) VALUES (?, ?)",
(datetime.datetime.now().isoformat(), dump_path))
conn.commit()
conn.close()
return dump_path
# -------------------------
# Optional: S3 upload
# -------------------------
def upload_file_to_s3(local_path, bucket_name, object_name=None):
if not BOTO3_AVAILABLE:
return False, "boto3 not installed"
if object_name is None:
object_name = os.path.basename(local_path)
try:
s3 = boto3.client(
"s3",
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"),
region_name=os.environ.get("AWS_DEFAULT_REGION")
)
s3.upload_file(local_path, bucket_name, object_name)
return True, f"s3://{bucket_name}/{object_name}"
except Exception as e:
return False, str(e)
# -------------------------
# Load FAISS index
# -------------------------
@st.cache_resource
def load_index():
faiss_path = hf_hub_download("krishnasimha/health-chatbot-data", "health_index.faiss", repo_type="dataset")
pkl_path = hf_hub_download("krishnasimha/health-chatbot-data", "health_metadata.pkl", repo_type="dataset")
index = faiss.read_index(faiss_path)
with open(pkl_path, "rb") as f:
metadata = pickle.load(f)
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
return index, metadata, embed_model
index, metadata, embed_model = load_index()
# -------------------------
# Load Reranker (Cross-Encoder)
# -------------------------
@st.cache_resource
def load_reranker():
# Cross-encoder β good speed/quality tradeoff
return CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
reranker = load_reranker()
# -------------------------
# FAISS benchmark
# -------------------------
def benchmark_faiss(n_queries=100, k=3):
queries = ["What is diabetes?", "How to prevent malaria?", "Symptoms of dengue?"]
query_embs = embed_model.encode(queries, convert_to_numpy=True)
times = []
for _ in range(n_queries):
q = query_embs[np.random.randint(0, len(query_embs))].reshape(1, -1)
start = time.time()
D, I = index.search(q, k)
times.append(time.time() - start)
avg_time = np.mean(times) * 1000
st.sidebar.write(f"β‘ FAISS Benchmark: {avg_time:.2f} ms/query over {n_queries} queries")
# -------------------------
# RSS / News
# -------------------------
RSS_URL = "https://news.google.com/rss/search?q=health+disease+awareness&hl=en-IN&gl=IN&ceid=IN:en"
async def fetch_rss_url(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as resp:
return await resp.text()
def fetch_news():
try:
raw_xml = asyncio.run(fetch_rss_url(RSS_URL))
feed = feedparser.parse(raw_xml)
articles = [{"title": e.get("title",""), "link": e.get("link",""), "published": e.get("published","")} for e in feed.entries[:5]]
return articles
except Exception:
return []
def update_news_hourly():
now = datetime.datetime.now()
if "last_news_update" not in st.session_state or (now - st.session_state.last_news_update).seconds > 3600:
st.session_state.last_news_update = now
st.session_state.news_articles = fetch_news()
# -------------------------
# Together API
# -------------------------
async def async_together_chat(messages):
url = "https://api.together.xyz/v1/chat/completions"
headers = {
"Authorization": f"Bearer {os.environ.get('TOGETHER_API_KEY','')}",
"Content-Type": "application/json",
}
payload = {"model": "deepseek-ai/DeepSeek-V3", "messages": messages}
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=payload) as resp:
result = await resp.json()
return result["choices"][0]["message"]["content"]
# -------------------------
# Retrieve answer (with reranker)
# -------------------------
def retrieve_answer(query, k=3):
cached_answer = search_cache(query, embed_model)
if cached_answer:
st.sidebar.success("β‘ Retrieved from cache")
return cached_answer, []
# Encode query
query_emb = embed_model.encode([query], convert_to_numpy=True)
# 1) FAISS retrieves more candidates (we fetch 10 for reranking)
fetch_k = max(k, 10)
D, I = index.search(query_emb, fetch_k)
retrieved = [metadata["texts"][i] for i in I[0]]
sources = [metadata["sources"][i] for i in I[0]]
# -----------------------------
# Cross-Encoder Reranking step
# -----------------------------
try:
pairs = [[query, chunk] for chunk in retrieved]
scores = reranker.predict(pairs)
reranked = sorted(zip(scores, retrieved, sources), key=lambda x: x[0], reverse=True)
top_reranked = reranked[:k]
top_chunks = [c for _, c, _ in top_reranked]
top_sources = [s for _, _, s in top_reranked]
context = "\n".join(top_chunks)
sources = top_sources
except Exception:
# fallback: if reranker fails for any reason, use the original retrieved top-k
context = "\n".join(retrieved[:k])
sources = sources[:k]
user_message = {"role":"user", "content": f"Answer based on context:\n{context}\n\nQuestion: {query}"}
st.session_state.chats[st.session_state.current_chat].append(user_message)
try:
answer = asyncio.run(async_together_chat(st.session_state.chats[st.session_state.current_chat]))
except Exception as e:
answer = f"Error: {e}"
try:
store_in_cache(query, answer, query_emb[0])
except Exception:
pass
st.session_state.chats[st.session_state.current_chat].append({"role": "assistant", "content": answer})
return answer, sources
# -------------------------
# Background news
# -------------------------
async def background_news_updater():
while True:
st.session_state.news_articles = fetch_news()
await asyncio.sleep(3600)
if "news_task" not in st.session_state:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
st.session_state.news_task = loop.create_task(background_news_updater())
# -------------------------
# Streamlit UI + Chat manager
# -------------------------
if "chats" not in st.session_state:
st.session_state.chats = {}
if "current_chat" not in st.session_state:
st.session_state.current_chat = "New Chat 1"
st.session_state.chats["New Chat 1"] = [{"role": "system", "content": "You are a helpful public health chatbot."}]
st.sidebar.header("Chat Manager")
if st.sidebar.button("β New Chat"):
chat_count = len(st.session_state.chats) + 1
new_chat_name = f"New Chat {chat_count}"
st.session_state.chats[new_chat_name] = [{"role": "system", "content": "You are a helpful public health chatbot."}]
st.session_state.current_chat = new_chat_name
benchmark_faiss()
chat_list = list(st.session_state.chats.keys())
selected_chat = st.sidebar.selectbox("Your chats:", chat_list, index=chat_list.index(st.session_state.current_chat))
st.session_state.current_chat = selected_chat
new_name = st.sidebar.text_input("Rename Chat:", st.session_state.current_chat)
if new_name and new_name != st.session_state.current_chat:
if new_name not in st.session_state.chats:
st.session_state.chats[new_name] = st.session_state.chats.pop(st.session_state.current_chat)
st.session_state.current_chat = new_name
# -------------------------
# Admin Panel
# -------------------------
query_params = st.query_params
is_admin_mode = (query_params.get("admin") == "1")
def rerun_app():
st.session_state['__rerun'] = not st.session_state.get('__rerun', False)
if is_admin_mode or st.session_state.get("is_admin", False):
st.sidebar.markdown("---")
st.sidebar.subheader("π Admin Panel (dev only)")
ADMIN_PASSWORD = os.environ.get("ADMIN_PASSWORD", "")
if "is_admin" not in st.session_state:
st.session_state.is_admin = False
if st.session_state.is_admin:
st.sidebar.success("Admin authenticated")
if st.sidebar.button("πͺ Logout Admin"):
st.session_state.is_admin = False
rerun_app()
else:
admin_input = st.sidebar.text_input("Enter admin password:", type="password")
if st.sidebar.button("Login"):
if admin_input == ADMIN_PASSWORD and ADMIN_PASSWORD != "":
st.session_state.is_admin = True
st.sidebar.success("Admin authenticated")
rerun_app()
else:
st.sidebar.error("Wrong password or ADMIN_PASSWORD not set")
if st.session_state.is_admin:
if st.sidebar.button("β¬οΈ Export Query Cache to Excel"):
file_path = export_cache_to_excel()
st.sidebar.success(f"Exported: {file_path}")
with open(file_path, "rb") as f:
st.sidebar.download_button("Download Excel", f, file_name=file_path, mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
if st.sidebar.button("πΎ Export SQL Dump"):
dump_path = export_cache_to_sql()
st.sidebar.success(f"SQL dump created: {dump_path}")
with open(dump_path, "rb") as f:
st.sidebar.download_button("Download SQL Dump", f, file_name=dump_path, mime="application/sql")
s3_bucket = os.environ.get("S3_BUCKET_NAME", "")
if s3_bucket and BOTO3_AVAILABLE:
if st.sidebar.button("π€ Upload last Excel to S3"):
excel_files = sorted([f for f in os.listdir(".") if f.startswith("cache_export_") and f.endswith(".xlsx")])
if excel_files:
last_file = excel_files[-1]
ok, msg = upload_file_to_s3(last_file, s3_bucket)
if ok:
st.sidebar.success(f"Uploaded: {msg}")
else:
st.sidebar.error(f"S3 upload failed: {msg}")
else:
st.sidebar.warning("No Excel export file found")
elif not BOTO3_AVAILABLE:
st.sidebar.info("S3 upload: boto3 not installed")
elif not s3_bucket:
st.sidebar.info("S3 upload disabled: set S3_BUCKET_NAME env var")
if st.sidebar.checkbox("π Show Export History"):
conn = get_db_connection()
logs = pd.read_sql_query("SELECT * FROM export_logs ORDER BY id DESC", conn)
conn.close()
st.sidebar.write(logs)
# -------------------------
# Main UI: News + Chat
# -------------------------
st.title(st.session_state.current_chat)
update_news_hourly()
st.subheader("π° Latest Health Updates")
if "news_articles" in st.session_state:
for art in st.session_state.news_articles:
st.markdown(f"**{art['title']}** \n[Read more]({art['link']}) \n*Published: {art['published']}*")
st.write("---")
user_query = st.text_input("Ask me about health, prevention, or awareness:")
if user_query:
with st.spinner("Searching knowledge base..."):
answer, sources = retrieve_answer(user_query)
st.write("### π‘ Answer")
st.write(answer)
st.write("### π Sources")
for src in sources:
st.write(f"- {src}")
# render chat history
for msg in st.session_state.chats[st.session_state.current_chat]:
if msg["role"] == "user":
st.write(f"π§ **You:** {msg['content']}")
elif msg["role"] == "assistant":
st.write(f"π€ **Bot:** {msg['content']}")
|