Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +228 -0
- clip_text_features.pt +3 -0
- clip_vit_b16.pth +3 -0
- requirements.txt +13 -0
- yolobest.pt +3 -0
app.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import clip
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from ultralytics import YOLO # Import YOLO
|
| 9 |
+
import gc
|
| 10 |
+
|
| 11 |
+
# --- Configuration & Model Loading ---
|
| 12 |
+
|
| 13 |
+
# Device Setup
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
print(f"Using device: {device}")
|
| 16 |
+
|
| 17 |
+
# --- CLIP Model Setup ---
|
| 18 |
+
print("Loading CLIP model...")
|
| 19 |
+
try:
|
| 20 |
+
clip_model, clip_preprocess = clip.load("ViT-B/16", device=device, jit=False) # jit=False can sometimes help compatibility
|
| 21 |
+
# Load saved visual backbone weights (optional but good practice if specifically saved)
|
| 22 |
+
# clip_model_path = "clip_model/clip_vit_b16.pth"
|
| 23 |
+
# if os.path.exists(clip_model_path):
|
| 24 |
+
# clip_model.load_state_dict(torch.load(clip_model_path, map_location=device))
|
| 25 |
+
# print("Loaded custom CLIP visual weights.")
|
| 26 |
+
clip_model.eval()
|
| 27 |
+
|
| 28 |
+
# Load saved text features
|
| 29 |
+
clip_text_features_path = "clip_text_features.pt"
|
| 30 |
+
if not os.path.exists(clip_text_features_path):
|
| 31 |
+
raise FileNotFoundError("CLIP text features file 'clip_text_features.pt' not found.")
|
| 32 |
+
clip_text_features = torch.load(clip_text_features_path, map_location=device)
|
| 33 |
+
print("CLIP model and text features loaded.")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error loading CLIP model or features: {e}")
|
| 36 |
+
# Handle error appropriately, maybe disable CLIP check
|
| 37 |
+
clip_model = None
|
| 38 |
+
|
| 39 |
+
# --- YOLOv8 Model Setup ---
|
| 40 |
+
print("Loading YOLOv8 model...")
|
| 41 |
+
# Define class names EXACTLY as used during YOLO training
|
| 42 |
+
YOLO_CLASSES = ['Cracked', 'Scratch', 'Flaking', 'Broken part', 'Corrosion', 'Dent','Paint chip','Missing part']
|
| 43 |
+
YOLO_NUM_CLASSES = len(YOLO_CLASSES)
|
| 44 |
+
|
| 45 |
+
# Path to your best YOLOv8 weights
|
| 46 |
+
yolo_weights_path = "best.pt"
|
| 47 |
+
|
| 48 |
+
if not os.path.exists(yolo_weights_path):
|
| 49 |
+
raise FileNotFoundError(f"YOLOv8 weights file '{yolo_weights_path}' not found.")
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
yolo_model = YOLO(yolo_weights_path)
|
| 53 |
+
# Set model parameters manually if needed (especially if config wasn't saved)
|
| 54 |
+
# This ensures the internal model state matches your training
|
| 55 |
+
# yolo_model.model.yaml['nc'] = YOLO_NUM_CLASSES # Usually loaded from weights/yaml, but good to verify
|
| 56 |
+
# Forcing model names if they don't load correctly from weights:
|
| 57 |
+
yolo_model.names = {i: name for i, name in enumerate(YOLO_CLASSES)}
|
| 58 |
+
|
| 59 |
+
# Move model to device explicitly
|
| 60 |
+
yolo_model.to(device)
|
| 61 |
+
print("YOLOv8 model loaded.")
|
| 62 |
+
print(f"YOLOv8 Class Names: {yolo_model.names}")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print(f"Error loading YOLOv8 model: {e}")
|
| 65 |
+
yolo_model = None
|
| 66 |
+
|
| 67 |
+
# --- Prediction Functions ---
|
| 68 |
+
|
| 69 |
+
def validate_image_with_clip(image_pil):
|
| 70 |
+
"""Checks if the PIL image is likely a car using CLIP."""
|
| 71 |
+
if clip_model is None:
|
| 72 |
+
print("CLIP model not loaded, skipping validation.")
|
| 73 |
+
return "Car", 1.0 # Assume it's a car if CLIP failed to load
|
| 74 |
+
|
| 75 |
+
print("Running CLIP validation...")
|
| 76 |
+
try:
|
| 77 |
+
# Use simple preprocessing for validation check
|
| 78 |
+
image_input = clip_preprocess(image_pil).unsqueeze(0).to(device)
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
image_features = clip_model.encode_image(image_input)
|
| 82 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 83 |
+
|
| 84 |
+
logit_scale = clip_model.logit_scale.exp()
|
| 85 |
+
similarity = (image_features @ clip_text_features.T) * logit_scale
|
| 86 |
+
probs = similarity.softmax(dim=-1).squeeze() # Get probabilities
|
| 87 |
+
|
| 88 |
+
car_prob = probs[0].item()
|
| 89 |
+
not_car_prob = probs[1].item()
|
| 90 |
+
predicted_label = "Car" if car_prob > not_car_prob else "Not Car"
|
| 91 |
+
|
| 92 |
+
print(f"CLIP Result: {predicted_label} (Car Prob: {car_prob:.4f}, Not Car Prob: {not_car_prob:.4f})")
|
| 93 |
+
return predicted_label, car_prob
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"Error during CLIP prediction: {e}")
|
| 96 |
+
return "Error", 0.0
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def predict_damage_with_yolo(image_np_bgr, confidence_threshold=0.4):
|
| 100 |
+
"""Runs YOLOv8 segmentation on the OpenCV image (BGR)."""
|
| 101 |
+
if yolo_model is None:
|
| 102 |
+
print("YOLOv8 model not loaded, skipping damage prediction.")
|
| 103 |
+
# Return original image with error message
|
| 104 |
+
cv2.putText(image_np_bgr, "YOLOv8 model failed to load", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
| 105 |
+
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB) # Return RGB for Gradio
|
| 106 |
+
|
| 107 |
+
print(f"Running YOLOv8 prediction with conf: {confidence_threshold}...")
|
| 108 |
+
try:
|
| 109 |
+
# Perform prediction
|
| 110 |
+
results = yolo_model.predict(
|
| 111 |
+
source=image_np_bgr, # Pass BGR numpy array
|
| 112 |
+
conf=confidence_threshold,
|
| 113 |
+
verbose=False, # Less console output
|
| 114 |
+
device=device
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if not results or len(results) == 0:
|
| 118 |
+
print("YOLOv8 predict() returned no results.")
|
| 119 |
+
# Return original image with message
|
| 120 |
+
cv2.putText(image_np_bgr, "No results from YOLOv8", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 128, 255), 2)
|
| 121 |
+
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB)
|
| 122 |
+
|
| 123 |
+
result = results[0] # Get results for the first image
|
| 124 |
+
|
| 125 |
+
# Use the built-in plot function to draw results on the image
|
| 126 |
+
# result.plot() returns a NumPy array in RGB format
|
| 127 |
+
annotated_image_rgb = result.plot(conf=True, boxes=True, masks=True)
|
| 128 |
+
|
| 129 |
+
print(f"YOLOv8 found {len(result.boxes)} instances above threshold.")
|
| 130 |
+
return annotated_image_rgb # Return the annotated RGB image
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"Error during YOLOv8 prediction or plotting: {e}")
|
| 134 |
+
# Return original image with error message
|
| 135 |
+
cv2.putText(image_np_bgr, f"YOLO Error: {e}", (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
|
| 136 |
+
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# --- Main Gradio Function ---
|
| 140 |
+
|
| 141 |
+
def validate_and_segment(input_image_pil, clip_threshold, yolo_threshold):
|
| 142 |
+
"""
|
| 143 |
+
Main function called by Gradio interface.
|
| 144 |
+
Takes a PIL image, runs CLIP validation, then YOLOv8 segmentation if valid.
|
| 145 |
+
"""
|
| 146 |
+
start_time = torch.cuda.Event(enable_timing=True)
|
| 147 |
+
end_time = torch.cuda.Event(enable_timing=True)
|
| 148 |
+
|
| 149 |
+
if input_image_pil is None:
|
| 150 |
+
return None, "Please upload an image."
|
| 151 |
+
|
| 152 |
+
# 1. Validate using CLIP
|
| 153 |
+
clip_label, clip_prob = validate_image_with_clip(input_image_pil)
|
| 154 |
+
|
| 155 |
+
if clip_label == "Error":
|
| 156 |
+
return None, "Error during CLIP validation."
|
| 157 |
+
if clip_label == "Not Car" or clip_prob < clip_threshold:
|
| 158 |
+
status_message = f"Image rejected by validator. Classified as '{clip_label}' (Confidence: {clip_prob:.2f}). Required > {clip_threshold:.2f}."
|
| 159 |
+
print(status_message)
|
| 160 |
+
# Convert PIL to numpy BGR then RGB for display
|
| 161 |
+
img_display_rgb = cv2.cvtColor(np.array(input_image_pil), cv2.COLOR_RGB2BGR)
|
| 162 |
+
cv2.putText(img_display_rgb, status_message, (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
|
| 163 |
+
img_display_rgb = cv2.cvtColor(img_display_rgb, cv2.COLOR_BGR2RGB)
|
| 164 |
+
return img_display_rgb, status_message # Display original image with message
|
| 165 |
+
|
| 166 |
+
# 2. If validation passes, run YOLOv8 segmentation
|
| 167 |
+
status_message = f"Image validated as 'Car' (Confidence: {clip_prob:.2f}). Running damage segmentation..."
|
| 168 |
+
print(status_message)
|
| 169 |
+
|
| 170 |
+
# Convert PIL Image to OpenCV format (BGR NumPy array) for YOLOv8
|
| 171 |
+
image_np_bgr = cv2.cvtColor(np.array(input_image_pil), cv2.COLOR_RGB2BGR)
|
| 172 |
+
|
| 173 |
+
# Record start time for YOLO prediction
|
| 174 |
+
start_time.record()
|
| 175 |
+
|
| 176 |
+
# Run YOLO prediction
|
| 177 |
+
annotated_image_rgb = predict_damage_with_yolo(image_np_bgr, yolo_threshold)
|
| 178 |
+
|
| 179 |
+
# Record end time and calculate duration
|
| 180 |
+
end_time.record()
|
| 181 |
+
torch.cuda.synchronize() # Wait for GPU operations to complete
|
| 182 |
+
prediction_time = start_time.elapsed_time(end_time) / 1000.0 # Time in seconds
|
| 183 |
+
|
| 184 |
+
status_message += f"\nDamage segmentation complete (Time: {prediction_time:.2f}s)."
|
| 185 |
+
print(status_message)
|
| 186 |
+
|
| 187 |
+
# Clear memory after prediction
|
| 188 |
+
gc.collect()
|
| 189 |
+
if torch.cuda.is_available():
|
| 190 |
+
torch.cuda.empty_cache()
|
| 191 |
+
|
| 192 |
+
return annotated_image_rgb, status_message
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
# --- Create Gradio Interface ---
|
| 196 |
+
print("Creating Gradio interface...")
|
| 197 |
+
|
| 198 |
+
# Define input and output components
|
| 199 |
+
image_input = gr.Image(type="pil", label="Upload Car Image") # Input PIL image
|
| 200 |
+
image_output = gr.Image(type="numpy", label="Segmentation Result") # Output NumPy array (RGB)
|
| 201 |
+
status_output = gr.Textbox(label="Status & Validation Result")
|
| 202 |
+
clip_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.5, label="CLIP Car Confidence Threshold")
|
| 203 |
+
yolo_slider = gr.Slider(minimum=0.05, maximum=0.95, step=0.05, value=0.4, label="YOLO Damage Confidence Threshold")
|
| 204 |
+
|
| 205 |
+
# Load example images if available
|
| 206 |
+
example_image_folder = "examples"
|
| 207 |
+
example_list = []
|
| 208 |
+
if os.path.isdir(example_image_folder):
|
| 209 |
+
for img_name in os.listdir(example_image_folder):
|
| 210 |
+
if img_name.lower().endswith(('.png', '.jpg', '.jpeg')):
|
| 211 |
+
example_list.append(os.path.join(example_image_folder, img_name))
|
| 212 |
+
|
| 213 |
+
# Build the interface
|
| 214 |
+
iface = gr.Interface(
|
| 215 |
+
fn=validate_and_segment,
|
| 216 |
+
inputs=[image_input, clip_slider, yolo_slider],
|
| 217 |
+
outputs=[image_output, status_output],
|
| 218 |
+
title="🚗 Car Damage Validation & Segmentation",
|
| 219 |
+
description="Upload an image of a car. The system first validates if it's a car using CLIP. If validated, it runs YOLOv8 to segment damage.",
|
| 220 |
+
examples=example_list if example_list else None,
|
| 221 |
+
allow_flagging='never' # Disable flagging
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# --- Launch the Interface ---
|
| 225 |
+
print("Launching Gradio interface...")
|
| 226 |
+
# share=True creates a public link (valid for ~72h) if running locally outside HF Spaces
|
| 227 |
+
# Use auth for basic protection if needed: auth=("username", "password")
|
| 228 |
+
iface.launch(share=False) # Set share=True if running locally and need public access
|
clip_text_features.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28315215c9429a04e5aafd99cf8a0292a489bf2937d44d580a3cf1c78ee84f94
|
| 3 |
+
size 3283
|
clip_vit_b16.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a3b5ff65477fcc1bbaa1fcaa249a6f9745269e6e06e751f9eea6efeb521bb7b
|
| 3 |
+
size 350463888
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
torchaudio
|
| 4 |
+
gradio
|
| 5 |
+
ultralytics
|
| 6 |
+
opencv-python-headless # Use headless version for servers
|
| 7 |
+
matplotlib # If used by ultralytics plotting or your code
|
| 8 |
+
ftfy # CLIP dependency
|
| 9 |
+
regex # CLIP dependency
|
| 10 |
+
git+https://github.com/openai/CLIP.git # Install CLIP directly
|
| 11 |
+
Pillow # PIL dependency for CLIP/images
|
| 12 |
+
# Add any other specific libraries you might need
|
| 13 |
+
pyyaml # Usually needed by ultralytics/detectron2 indirectly
|
yolobest.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae345bfb159676f6343daf72c1912bb374fa4997e6788e84d930b9bb28751d27
|
| 3 |
+
size 92296829
|