Spaces:
Sleeping
Sleeping
File size: 26,407 Bytes
73266fe 953c509 73266fe 953c509 546586d 73266fe 953c509 73266fe 953c509 73266fe 953c509 73266fe 953c509 c2717cb 953c509 73266fe c2717cb 953c509 73266fe c2717cb 953c509 73266fe c2717cb 73266fe c2717cb 953c509 73266fe c2717cb 953c509 73266fe c2717cb 73266fe c2717cb 73266fe c2717cb fe522f1 953c509 c2717cb 953c509 c2717cb 953c509 73266fe 953c509 73266fe c2717cb 953c509 c2717cb 953c509 73266fe 953c509 73266fe fe522f1 953c509 fe522f1 73266fe 4d8559b 73266fe 4d8559b 73266fe 4d8559b 73266fe 953c509 73266fe fe522f1 c2717cb fe522f1 c2717cb fe522f1 953c509 73266fe 953c509 73266fe fe522f1 c2717cb fe522f1 c2717cb fe522f1 953c509 aa47bc2 953c509 fe522f1 c2717cb 953c509 73266fe c2717cb fe522f1 953c509 fe522f1 4d8559b fe522f1 953c509 c2717cb fe522f1 953c509 4d8559b 953c509 c2717cb 953c509 c2717cb 953c509 73266fe c2717cb 73266fe c2717cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# app.py
import gradio as gr
import torch
import clip
from PIL import Image
import numpy as np
import os
import cv2
import gc # Garbage collector
import logging
import random # For annotator colors
import time # For timing checks
import traceback # For detailed error printing
# --- YOLOv8 Imports ---
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator # For drawing YOLO results
# --- Setup Logging ---
logging.getLogger("ultralytics").setLevel(logging.WARNING) # Reduce YOLO logging noise
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Constants ---
DAMAGE_CLASSES = ['Cracked', 'Scratch', 'Flaking', 'Broken part', 'Corrosion', 'Dent', 'Paint chip', 'Missing part']
NUM_DAMAGE_CLASSES = len(DAMAGE_CLASSES)
CAR_PART_CLASSES = [
"Quarter-panel", "Front-wheel", "Back-window", "Trunk", "Front-door",
"Rocker-panel", "Grille", "Windshield", "Front-window", "Back-door",
"Headlight", "Back-wheel", "Back-windshield", "Hood", "Fender",
"Tail-light", "License-plate", "Front-bumper", "Back-bumper", "Mirror", "Roof"
]
NUM_CAR_PART_CLASSES = len(CAR_PART_CLASSES)
CLIP_TEXT_FEATURES_PATH = "./clip_text_features.pt"
DAMAGE_MODEL_WEIGHTS_PATH = "./best.pt"
PART_MODEL_WEIGHTS_PATH = "./partdetection_yolobest.pt"
DEFAULT_DAMAGE_PRED_THRESHOLD = 0.4
DEFAULT_PART_PRED_THRESHOLD = 0.3
# --- Device Setup ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# --- MODEL LOADING ---
print("--- Initializing Models ---")
clip_model, clip_preprocess, clip_text_features = None, None, None
damage_model, part_model = None, None
clip_load_error_msg, damage_load_error_msg, part_load_error_msg = None, None, None
try:
logger.info("Loading CLIP model (ViT-B/16)...")
clip_model, clip_preprocess = clip.load("ViT-B/16", device=DEVICE, jit=False)
clip_model.eval()
if not os.path.exists(CLIP_TEXT_FEATURES_PATH):
raise FileNotFoundError(f"CLIP text features not found: {CLIP_TEXT_FEATURES_PATH}.")
clip_text_features = torch.load(CLIP_TEXT_FEATURES_PATH, map_location=DEVICE)
logger.info(f"CLIP loaded (Text Features dtype: {clip_text_features.dtype}).")
except Exception as e:
clip_load_error_msg = f"CLIP load error: {e}"
logger.error(clip_load_error_msg, exc_info=True)
try:
logger.info(f"Loading Damage YOLOv8 model from {DAMAGE_MODEL_WEIGHTS_PATH}...")
if not os.path.exists(DAMAGE_MODEL_WEIGHTS_PATH):
raise FileNotFoundError(f"Damage model weights not found: {DAMAGE_MODEL_WEIGHTS_PATH}.")
damage_model = YOLO(DAMAGE_MODEL_WEIGHTS_PATH)
damage_model.to(DEVICE)
logger.info(f"Damage model task: {damage_model.task}")
if damage_model.task != 'segment':
damage_load_error_msg = f"CRITICAL ERROR: Damage model task is {damage_model.task}, not 'segment'. This model won't produce masks!"
logger.error(damage_load_error_msg)
damage_model = None # Invalidate model
else:
loaded_damage_names = list(damage_model.names.values())
if loaded_damage_names != DAMAGE_CLASSES:
logger.warning(f"Mismatch: Defined DAMAGE_CLASSES vs names in {DAMAGE_MODEL_WEIGHTS_PATH}")
DAMAGE_CLASSES = loaded_damage_names
logger.warning(f"Updated DAMAGE_CLASSES to: {DAMAGE_CLASSES}")
logger.info("Damage YOLOv8 model loaded.")
except Exception as e:
damage_load_error_msg = f"Damage YOLO load error: {e}"
logger.error(damage_load_error_msg, exc_info=True)
damage_model = None
try:
logger.info(f"Loading Part YOLOv8 model from {PART_MODEL_WEIGHTS_PATH}...")
if not os.path.exists(PART_MODEL_WEIGHTS_PATH):
raise FileNotFoundError(f"Part model weights not found: {PART_MODEL_WEIGHTS_PATH}.")
part_model = YOLO(PART_MODEL_WEIGHTS_PATH)
part_model.to(DEVICE)
logger.info(f"Part model task: {part_model.task}")
if part_model.task != 'segment':
part_load_error_msg = f"CRITICAL ERROR: Part model task is {part_model.task}, not 'segment'. This model won't produce masks!"
logger.error(part_load_error_msg)
part_model = None # Invalidate model
else:
loaded_part_names = list(part_model.names.values())
if loaded_part_names != CAR_PART_CLASSES:
logger.warning(f"Mismatch: Defined CAR_PART_CLASSES vs names in {PART_MODEL_WEIGHTS_PATH}")
CAR_PART_CLASSES = loaded_part_names
logger.warning(f"Updated CAR_PART_CLASSES to: {CAR_PART_CLASSES}")
logger.info("Part YOLOv8 model loaded.")
except Exception as e:
part_load_error_msg = f"Part YOLO load error: {e}"
logger.error(part_load_error_msg, exc_info=True)
part_model = None
print("--- Model loading process finished. ---")
if clip_load_error_msg:
print(f"CLIP STATUS: {clip_load_error_msg}")
else:
print("CLIP STATUS: Loaded OK.")
if damage_load_error_msg:
print(f"DAMAGE MODEL STATUS: {damage_load_error_msg}")
else:
print("DAMAGE MODEL STATUS: Loaded OK.")
if part_load_error_msg:
print(f"PART MODEL STATUS: {part_load_error_msg}")
else:
print("PART MODEL STATUS: Loaded OK.")
# --- Add DirectVisualizer class for fallback visualization ---
class DirectVisualizer:
"""Fallback visualizer for when Ultralytics Annotator doesn't work"""
def __init__(self, image):
self.image = image.copy()
def draw_masks(self, masks_np, class_ids, class_names, color_type="damage"):
"""Draw masks directly using OpenCV"""
if masks_np.shape[0] == 0:
return
for i, (mask, class_id) in enumerate(zip(masks_np, class_ids)):
if not np.any(mask): # Skip empty masks
continue
# Set color based on type
if color_type == "damage":
color = (0, 0, 255) # BGR Red
alpha = 0.4
else:
color = (0, 255, 0) # BGR Green
alpha = 0.3
# Create color overlay
overlay = self.image.copy()
overlay[mask] = color
# Apply with transparency
cv2.addWeighted(overlay, alpha, self.image, 1-alpha, 0, self.image)
# Draw contour
mask_8bit = mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask_8bit, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(self.image, contours, -1, color, 2)
# Add text label
try:
if 0 <= class_id < len(class_names):
label = class_names[class_id]
M = cv2.moments(mask_8bit)
if M["m00"] > 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
cv2.putText(self.image, label, (cx, cy),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
except Exception as e:
logger.warning(f"Error adding label: {e}")
def result(self):
"""Return the final image"""
return self.image
# --- Prediction Functions ---
def classify_image_clip(image_pil):
if clip_model is None:
return "Error: CLIP Model Not Loaded", {"Error": 1.0}
try:
if image_pil.mode != "RGB":
image_pil = image_pil.convert("RGB")
image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features_matched = clip_text_features
if image_features.dtype != clip_text_features.dtype:
text_features_matched = clip_text_features.to(image_features.dtype)
similarity = (image_features @ text_features_matched.T) * clip_model.logit_scale.exp()
probs = similarity.softmax(dim=-1).squeeze().cpu()
return ("Car" if probs[0] > probs[1] else "Not Car"), {"Car": f"{probs[0]:.3f}", "Not Car": f"{probs[1]:.3f}"}
except Exception as e:
logger.error(f"CLIP Error: {e}", exc_info=True)
return "Error: CLIP", {"Error": 1.0}
def process_car_image(image_np_bgr, damage_threshold, part_threshold):
if damage_model is None:
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB), f"Error: Damage model failed to load ({damage_load_error_msg})"
if part_model is None:
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB), f"Error: Part model failed to load ({part_load_error_msg})"
if damage_model.task != 'segment':
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB), "Error: Damage model is not a segmentation model."
if part_model.task != 'segment':
return cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB), "Error: Part model is not a segmentation model."
final_assignments = []
annotated_image_bgr = image_np_bgr.copy()
img_h, img_w = image_np_bgr.shape[:2]
logger.info("Starting combined YOLO processing...")
im_tensor_gpu_for_annotator = None
ultralytic_viz_success = False
try:
# --- Check Ultralytics Version ---
try:
import pkg_resources
ultraytics_version = pkg_resources.get_distribution("ultralytics").version
logger.info(f"Ultralytics version: {ultraytics_version}")
except:
logger.warning("Could not determine Ultralytics version")
# --- Prepare Image Tensor for Annotator ---
logger.info("Preparing image tensor for annotator...")
try:
if image_np_bgr.dtype != np.uint8:
logger.warning(f"Converting input image from {image_np_bgr.dtype} to uint8 for tensor creation.")
image_np_uint8 = image_np_bgr.astype(np.uint8)
else:
image_np_uint8 = image_np_bgr
# Create tensor in HWC format on the correct device
im_tensor_gpu_for_annotator = torch.from_numpy(image_np_uint8).to(DEVICE)
logger.info(f"Image tensor for annotator: shape={im_tensor_gpu_for_annotator.shape}, dtype={im_tensor_gpu_for_annotator.dtype}, device={im_tensor_gpu_for_annotator.device}")
except Exception as e_tensor:
logger.error(f"Could not create image tensor: {e_tensor}. Mask visualization will fail.", exc_info=True)
im_tensor_gpu_for_annotator = None # Set to None if conversion fails
# --- 1. Predict Damages ---
logger.info(f"Running Damage Segmentation (Threshold: {damage_threshold})...")
damage_results = damage_model.predict(image_np_bgr, verbose=False, device=DEVICE, conf=damage_threshold)
damage_result = damage_results[0]
logger.info(f"Found {len(damage_result.boxes)} potential damages.")
# Check mask availability and format
if damage_result.masks is None:
logger.warning("No damage masks in result! Check if damage model is segmentation type.")
damage_masks_raw = torch.empty((0,0,0), device=DEVICE)
else:
logger.info(f"Damage masks type: {type(damage_result.masks)}")
try:
if hasattr(damage_result.masks, 'data'):
damage_masks_raw = damage_result.masks.data
logger.info(f"Damage masks via .data: shape={damage_masks_raw.shape}, dtype={damage_masks_raw.dtype}")
elif isinstance(damage_result.masks, torch.Tensor):
damage_masks_raw = damage_result.masks
logger.info(f"Damage masks as tensor: shape={damage_masks_raw.shape}, dtype={damage_masks_raw.dtype}")
else:
logger.warning(f"Unknown mask type: {type(damage_result.masks)}")
damage_masks_raw = torch.empty((0,0,0), device=DEVICE)
except Exception as e_mask:
logger.error(f"Error accessing damage masks: {e_mask}", exc_info=True)
damage_masks_raw = torch.empty((0,0,0), device=DEVICE)
damage_classes_ids_cpu = damage_result.boxes.cls.cpu().numpy().astype(int) if damage_result.boxes is not None else np.array([])
damage_boxes_xyxy_cpu = damage_result.boxes.xyxy.cpu() if damage_result.boxes is not None else torch.empty((0,4))
# --- 2. Predict Parts ---
logger.info(f"Running Part Segmentation (Threshold: {part_threshold})...")
part_results = part_model.predict(image_np_bgr, verbose=False, device=DEVICE, conf=part_threshold)
part_result = part_results[0]
logger.info(f"Found {len(part_result.boxes)} potential parts.")
# Check mask availability and format
if part_result.masks is None:
logger.warning("No part masks in result! Check if part model is segmentation type.")
part_masks_raw = torch.empty((0,0,0), device=DEVICE)
else:
logger.info(f"Part masks type: {type(part_result.masks)}")
try:
if hasattr(part_result.masks, 'data'):
part_masks_raw = part_result.masks.data
logger.info(f"Part masks via .data: shape={part_masks_raw.shape}, dtype={part_masks_raw.dtype}")
elif isinstance(part_result.masks, torch.Tensor):
part_masks_raw = part_result.masks
logger.info(f"Part masks as tensor: shape={part_masks_raw.shape}, dtype={part_masks_raw.dtype}")
else:
logger.warning(f"Unknown mask type: {type(part_result.masks)}")
part_masks_raw = torch.empty((0,0,0), device=DEVICE)
except Exception as e_mask:
logger.error(f"Error accessing part masks: {e_mask}", exc_info=True)
part_masks_raw = torch.empty((0,0,0), device=DEVICE)
part_classes_ids_cpu = part_result.boxes.cls.cpu().numpy().astype(int) if part_result.boxes is not None else np.array([])
part_boxes_xyxy_cpu = part_result.boxes.xyxy.cpu() if part_result.boxes is not None else torch.empty((0,4))
# --- 3. Resize Masks ---
def resize_masks(masks_tensor, target_h, target_w):
if masks_tensor is None or masks_tensor.numel() == 0 or masks_tensor.shape[0] == 0:
logger.warning("Empty masks tensor passed to resize_masks")
return np.zeros((0, target_h, target_w), dtype=bool)
try:
masks_np_bool = masks_tensor.cpu().numpy().astype(bool)
logger.info(f"Resizing masks from {masks_np_bool.shape} to ({target_h}, {target_w})")
if masks_np_bool.shape[1] == target_h and masks_np_bool.shape[2] == target_w:
return masks_np_bool
resized_masks_list = []
for i in range(masks_np_bool.shape[0]):
mask = masks_np_bool[i]
mask_resized = cv2.resize(mask.astype(np.uint8), (target_w, target_h), interpolation=cv2.INTER_NEAREST)
resized_masks_list.append(mask_resized.astype(bool))
return np.array(resized_masks_list)
except Exception as e_resize:
logger.error(f"Error resizing masks: {e_resize}", exc_info=True)
return np.zeros((0, target_h, target_w), dtype=bool)
damage_masks_np = resize_masks(damage_masks_raw, img_h, img_w)
part_masks_np = resize_masks(part_masks_raw, img_h, img_w)
# --- 4. Calculate Overlap ---
logger.info("Calculating overlap...")
if damage_masks_np.shape[0] > 0 and part_masks_np.shape[0] > 0:
overlap_threshold = 0.4
for i in range(len(damage_masks_np)):
damage_mask = damage_masks_np[i]
damage_class_id = damage_classes_ids_cpu[i]
try:
damage_name = DAMAGE_CLASSES[damage_class_id]
except IndexError:
logger.warning(f"Invalid damage ID {damage_class_id}")
continue
damage_area = np.sum(damage_mask)
if damage_area < 10:
continue
max_overlap = 0
assigned_part_name = "Unknown / Outside Parts"
for j in range(len(part_masks_np)):
part_mask = part_masks_np[j]
part_class_id = part_classes_ids_cpu[j]
try:
part_name = CAR_PART_CLASSES[part_class_id]
except IndexError:
logger.warning(f"Invalid part ID {part_class_id}")
continue
intersection = np.logical_and(damage_mask, part_mask)
overlap_ratio = np.sum(intersection) / damage_area if damage_area > 0 else 0
if overlap_ratio > max_overlap:
max_overlap = overlap_ratio
if max_overlap >= overlap_threshold:
assigned_part_name = part_name
assignment_desc = f"{damage_name} in {assigned_part_name}"
if assigned_part_name == "Unknown / Outside Parts":
assignment_desc += f" (Overlap < {overlap_threshold*100:.0f}%)"
final_assignments.append(assignment_desc)
elif damage_masks_np.shape[0] > 0:
final_assignments.append(f"{len(damage_masks_np)} damages found, but no parts detected/matched above threshold {part_threshold}.")
elif part_masks_np.shape[0] > 0:
final_assignments.append(f"No damages detected above threshold {damage_threshold}.")
else:
final_assignments.append(f"No damages or parts detected above thresholds.")
logger.info(f"Assignment results: {final_assignments}")
# --- 5. Try BOTH visualization approaches ---
# First attempt: Ultralytics annotator
try:
logger.info("Trying Ultralytics Annotator for visualization...")
annotator = Annotator(annotated_image_bgr.copy(), line_width=2, example=CAR_PART_CLASSES)
# Draw part masks with Ultralytics
if part_masks_raw.numel() > 0 and im_tensor_gpu_for_annotator is not None:
try:
colors_part = [(0, random.randint(100, 200), 0) for _ in part_classes_ids_cpu]
mask_data_part = part_masks_raw
if mask_data_part.device != im_tensor_gpu_for_annotator.device:
mask_data_part = mask_data_part.to(im_tensor_gpu_for_annotator.device)
annotator.masks(mask_data_part, colors=colors_part, im_gpu=im_tensor_gpu_for_annotator, alpha=0.3)
for box, cls_id in zip(part_boxes_xyxy_cpu, part_classes_ids_cpu):
try:
label = f"{CAR_PART_CLASSES[cls_id]}"
annotator.box_label(box, label=label, color=(0, 200, 0))
except IndexError:
logger.warning(f"Invalid part ID {cls_id}")
logger.info("Successfully drew part masks with annotator")
ultralytic_viz_success = True
except Exception as e_part:
logger.error(f"Error drawing part masks with annotator: {e_part}", exc_info=True)
# Draw damage masks with Ultralytics
if damage_masks_raw.numel() > 0 and im_tensor_gpu_for_annotator is not None:
try:
colors_dmg = [(random.randint(100, 200), 0, 0) for _ in damage_classes_ids_cpu]
mask_data_dmg = damage_masks_raw
if mask_data_dmg.device != im_tensor_gpu_for_annotator.device:
mask_data_dmg = mask_data_dmg.to(im_tensor_gpu_for_annotator.device)
annotator.masks(mask_data_dmg, colors=colors_dmg, im_gpu=im_tensor_gpu_for_annotator, alpha=0.4)
for box, cls_id in zip(damage_boxes_xyxy_cpu, damage_classes_ids_cpu):
try:
label = f"{DAMAGE_CLASSES[cls_id]}"
annotator.box_label(box, label=label, color=(200, 0, 0))
except IndexError:
logger.warning(f"Invalid damage ID {cls_id}")
logger.info("Successfully drew damage masks with annotator")
ultralytic_viz_success = True
except Exception as e_dmg:
logger.error(f"Error drawing damage masks with annotator: {e_dmg}", exc_info=True)
# Get result from annotator if successful
if ultralytic_viz_success:
annotated_image_bgr = annotator.result()
logger.info("Using Ultralytics annotator visualization")
else:
logger.warning("Ultralytics annotator visualization failed, will try direct approach")
except Exception as e_anno:
logger.error(f"Error with Ultralytics annotator: {e_anno}", exc_info=True)
ultralytic_viz_success = False
# Second attempt: Direct visualization with OpenCV if Ultralytics failed
if not ultralytic_viz_success:
try:
logger.info("Using DirectVisualizer as fallback...")
direct_viz = DirectVisualizer(image_np_bgr.copy())
# Draw part masks first (background layer)
if part_masks_np.shape[0] > 0:
logger.info(f"Drawing {part_masks_np.shape[0]} part masks directly")
direct_viz.draw_masks(part_masks_np, part_classes_ids_cpu, CAR_PART_CLASSES, "part")
# Draw damage masks on top
if damage_masks_np.shape[0] > 0:
logger.info(f"Drawing {damage_masks_np.shape[0]} damage masks directly")
direct_viz.draw_masks(damage_masks_np, damage_classes_ids_cpu, DAMAGE_CLASSES, "damage")
annotated_image_bgr = direct_viz.result()
logger.info("Direct visualization successful")
except Exception as e_direct:
logger.error(f"Error with direct visualization: {e_direct}", exc_info=True)
# If direct visualization also fails, use the original image
annotated_image_bgr = image_np_bgr.copy()
except Exception as e:
logger.error(f"Error during combined processing: {e}", exc_info=True)
traceback.print_exc()
final_assignments.append(f"Error during processing: {str(e)}")
annotated_image_bgr = image_np_bgr.copy()
assignment_text = "\n".join(final_assignments) if final_assignments else "No damage assignments generated."
final_output_image_rgb = cv2.cvtColor(annotated_image_bgr, cv2.COLOR_BGR2RGB)
return final_output_image_rgb, assignment_text
# --- Main Gradio Function ---
def predict_pipeline(image_np_input, damage_thresh, part_thresh):
if image_np_input is None:
return "Please upload an image.", {}, None, "N/A"
logger.info(f"--- New Request (Damage Thr: {damage_thresh:.2f}, Part Thr: {part_thresh:.2f}) ---")
start_time = time.time()
image_np_bgr = cv2.cvtColor(image_np_input, cv2.COLOR_RGB2BGR)
image_pil = Image.fromarray(image_np_input)
final_output_image, assignment_text, classification_result, probabilities = None, "Processing...", "Error", {}
try:
classification_result, probabilities = classify_image_clip(image_pil)
except Exception as e:
logger.error(f"CLIP Error: {e}", exc_info=True)
assignment_text = f"CLIP Error: {e}"
final_output_image = cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB)
if classification_result == "Car":
try:
final_output_image, assignment_text = process_car_image(image_np_bgr, damage_thresh, part_thresh)
except Exception as e:
logger.error(f"Seg/Assign Error: {e}", exc_info=True)
assignment_text = f"Seg Error: {e}"
final_output_image = cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB)
elif classification_result == "Not Car":
final_output_image = cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB)
assignment_text = "Image classified as Not Car."
elif final_output_image is None:
final_output_image = cv2.cvtColor(image_np_bgr, cv2.COLOR_BGR2RGB)
assignment_text = "Error during classification."
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"Total processing time: {time.time() - start_time:.2f}s.")
return classification_result, probabilities, final_output_image, assignment_text
# --- Gradio Interface ---
logger.info("Setting up Gradio interface...")
title = "🚗 Car Damage Detection"
description = "1. Upload... 2. Classify... 3. Segment... 4. Assign... 5. Output..." # Shortened
input_image = gr.Image(type="numpy", label="Upload Car Image")
damage_threshold_slider = gr.Slider(minimum=0.05, maximum=0.95, step=0.05, value=DEFAULT_DAMAGE_PRED_THRESHOLD, label="Damage Confidence Threshold")
part_threshold_slider = gr.Slider(minimum=0.05, maximum=0.95, step=0.05, value=DEFAULT_PART_PRED_THRESHOLD, label="Part Confidence Threshold")
output_classification = gr.Textbox(label="1. Classification Result")
output_probabilities = gr.Label(label="Classification Probabilities")
output_image_display = gr.Image(type="numpy", label="3. Segmentation Visualization")
output_assignment = gr.Textbox(label="2. Damage Assignments", lines=5, interactive=False)
iface = gr.Interface(
fn=predict_pipeline,
inputs=[input_image, damage_threshold_slider, part_threshold_slider],
outputs=[output_classification, output_probabilities, output_image_display, output_assignment],
title=title,
description=description,
allow_flagging="never"
)
if __name__ == "__main__":
logger.info("Launching Gradio app...")
iface.launch()
|