File size: 6,015 Bytes
02a89de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
DocuMint Smart Trainer UI
- Core adapter (one-time)
- Skill-wise adapters
- Dataset selectable from UI
"""

import os
import threading
import gradio as gr
from train import train_skill


# ================== GLOBAL ==================

training_thread = None
CORE_LOCK_FILE = ".core_trained"


# ================== HELPERS ==================

def core_already_trained():
    return os.path.exists(CORE_LOCK_FILE)


def mark_core_trained():
    with open(CORE_LOCK_FILE, "w") as f:
        f.write("trained")


# ================== TRAIN HANDLER ==================

def start_training(
    training_mode,
    dataset_name,
    skill_name,
    epochs,
    learning_rate,
    batch_size,
):
    global training_thread

    if training_thread and training_thread.is_alive():
        return "⚠️ Training already running"

    if training_mode == "Core":
        if core_already_trained():
            return "❌ Core adapter already trained. Core is locked."

        final_skill = "core"
        final_epochs = int(epochs)
        final_lr = float(learning_rate)

    else:  # Skill training
        if not skill_name.strip():
            return "❌ Skill name is required for Skill training"

        final_skill = skill_name.strip().lower()
        final_epochs = int(epochs)
        final_lr = float(learning_rate)

    def run():
        train_skill(
            dataset_name=dataset_name.strip(),
            skill_name=final_skill,
            epochs=final_epochs,
            lr=final_lr,
            batch_size=int(batch_size),
        )

        if training_mode == "Core":
            mark_core_trained()

    training_thread = threading.Thread(target=run, daemon=True)
    training_thread.start()

    return (
        f"πŸš€ Training started\n\n"
        f"Mode: {training_mode}\n"
        f"Dataset: {dataset_name}\n"
        f"Adapter: {final_skill}\n"
        f"Epochs: {final_epochs}\n"
        f"LR: {final_lr}"
    )


# ================== UI ==================

with gr.Blocks(
    title="DocuMint Smart Trainer",
    theme=gr.themes.Soft(primary_hue="orange"),
) as demo:

    gr.Markdown(
        """
        # 🧠 DocuMint Smart Trainer
        Progressive LoRA training with **Core freeze + Skill adapters**

        βœ” Dataset selectable  
        βœ” No catastrophic forgetting  
        βœ” Production-safe training
        """
    )

    with gr.Row():
        core_status = gr.Markdown(
            f"### Core Status: {'πŸ”’ Locked (trained)' if core_already_trained() else 'πŸ†• Not trained'}"
        )

    with gr.Tabs():

        # ================== TRAIN TAB ==================
        with gr.Tab("🎯 Train"):

            with gr.Row():
                with gr.Column():

                    training_mode = gr.Radio(
                        ["Core", "Skill"],
                        value="Skill",
                        label="Training Mode",
                        info="Core = one time only | Skill = additive learning",
                    )

                    dataset_input = gr.Textbox(
                        label="Dataset (Hugging Face)",
                        placeholder="e.g. gsm8k or himu1780/DocuMint-Data",
                    )

                    skill_input = gr.Textbox(
                        label="Skill Name (Skill mode only)",
                        placeholder="vat / invoice / math / docs",
                    )

                    epochs_input = gr.Slider(
                        minimum=1,
                        maximum=5,
                        value=1,
                        step=1,
                        label="Epochs",
                    )

                    lr_input = gr.Number(
                        value=5e-5,
                        label="Learning Rate",
                    )

                    batch_input = gr.Slider(
                        minimum=1,
                        maximum=4,
                        value=1,
                        step=1,
                        label="Batch Size",
                    )

                    train_btn = gr.Button(
                        "πŸš€ Start Training",
                        variant="primary",
                        size="lg",
                    )

                with gr.Column():
                    output_box = gr.Textbox(
                        label="Status",
                        lines=8,
                        interactive=False,
                    )

            train_btn.click(
                fn=start_training,
                inputs=[
                    training_mode,
                    dataset_input,
                    skill_input,
                    epochs_input,
                    lr_input,
                    batch_input,
                ],
                outputs=output_box,
            )

        # ================== HELP TAB ==================
        with gr.Tab("❓ Help"):
            gr.Markdown(
                """
                ## How to use safely

                ### 1️⃣ Train Core (ONE TIME)
                - Mode: **Core**
                - Dataset: `gsm8k` / `MathInstruct`
                - Epochs: `3`
                - LR: `2e-4`

                πŸ”’ Core will auto-lock after training.

                ### 2️⃣ Add Skills (Unlimited)
                - Mode: **Skill**
                - Skill name: `vat`, `invoice`, `math`, etc
                - Epochs: `1`
                - LR: `5e-5` or `3e-5`

                ### 3️⃣ Dataset is always safe to change
                What matters is **which adapter is trained**, not the dataset.

                ---
                **Rule:**  
                Core = brain  
                Skill = hands / legs
                """
            )

    gr.Markdown(
        """
        ---
        **DocuMint Smart Trainer**  
        Progressive learning without forgetting
        """
    )


# ================== LAUNCH ==================

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)