Create classifier.py
Browse files- classifier.py +79 -0
classifier.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
def few_shot_fault_classification(
|
| 7 |
+
model,
|
| 8 |
+
test_images,
|
| 9 |
+
test_image_filenames,
|
| 10 |
+
nominal_images,
|
| 11 |
+
nominal_descriptions,
|
| 12 |
+
defective_images,
|
| 13 |
+
defective_descriptions,
|
| 14 |
+
num_few_shot_nominal_imgs: int,
|
| 15 |
+
device="cpu",
|
| 16 |
+
file_path: str = '.',
|
| 17 |
+
file_name: str = 'image_classification_results.csv',
|
| 18 |
+
print_one_liner: bool = False
|
| 19 |
+
):
|
| 20 |
+
if not isinstance(test_images, list):
|
| 21 |
+
test_images = [test_images]
|
| 22 |
+
if not isinstance(test_image_filenames, list):
|
| 23 |
+
test_image_filenames = [test_image_filenames]
|
| 24 |
+
if not isinstance(nominal_images, list):
|
| 25 |
+
nominal_images = [nominal_images]
|
| 26 |
+
if not isinstance(defective_images, list):
|
| 27 |
+
defective_images = [defective_images]
|
| 28 |
+
|
| 29 |
+
csv_file = os.path.join(file_path, file_name)
|
| 30 |
+
results = []
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
nominal_features = torch.stack([model.encode_image(img.to(device)) for img in nominal_images])
|
| 34 |
+
nominal_features /= nominal_features.norm(dim=-1, keepdim=True)
|
| 35 |
+
|
| 36 |
+
defective_features = torch.stack([model.encode_image(img.to(device)) for img in defective_images])
|
| 37 |
+
defective_features /= defective_features.norm(dim=-1, keepdim=True)
|
| 38 |
+
|
| 39 |
+
for idx, test_img in enumerate(test_images):
|
| 40 |
+
test_features = model.encode_image(test_img.to(device))
|
| 41 |
+
test_features /= test_features.norm(dim=-1, keepdim=True)
|
| 42 |
+
|
| 43 |
+
max_nominal_similarity = max_defective_similarity = -float('inf')
|
| 44 |
+
max_nominal_idx = max_defective_idx = -1
|
| 45 |
+
|
| 46 |
+
for i in range(nominal_features.shape[0]):
|
| 47 |
+
similarity = (test_features @ nominal_features[i].T).item()
|
| 48 |
+
if similarity > max_nominal_similarity:
|
| 49 |
+
max_nominal_similarity = similarity
|
| 50 |
+
max_nominal_idx = i
|
| 51 |
+
|
| 52 |
+
for j in range(defective_features.shape[0]):
|
| 53 |
+
similarity = (test_features @ defective_features[j].T).item()
|
| 54 |
+
if similarity > max_defective_similarity:
|
| 55 |
+
max_defective_similarity = similarity
|
| 56 |
+
max_defective_idx = j
|
| 57 |
+
|
| 58 |
+
similarities = torch.tensor([max_nominal_similarity, max_defective_similarity])
|
| 59 |
+
probabilities = F.softmax(similarities, dim=0).tolist()
|
| 60 |
+
|
| 61 |
+
classification = "Defective" if probabilities[1] > probabilities[0] else "Nominal"
|
| 62 |
+
|
| 63 |
+
result = {
|
| 64 |
+
"datetime_of_operation": datetime.now().isoformat(),
|
| 65 |
+
"image_path": test_image_filenames[idx],
|
| 66 |
+
"classification_result": classification,
|
| 67 |
+
"non_defect_prob": round(probabilities[0], 3),
|
| 68 |
+
"defect_prob": round(probabilities[1], 3),
|
| 69 |
+
"nominal_description": nominal_descriptions[max_nominal_idx],
|
| 70 |
+
"defective_description": defective_descriptions[max_defective_idx],
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
results.append(result)
|
| 74 |
+
|
| 75 |
+
if print_one_liner:
|
| 76 |
+
print(f"{test_image_filenames[idx]} → {classification} "
|
| 77 |
+
f"(Nominal: {probabilities[0]:.3f}, Defective: {probabilities[1]:.3f})")
|
| 78 |
+
|
| 79 |
+
return results
|