Spaces:
Build error
Build error
| import gradio as gr | |
| import torch | |
| from transformers import pipeline | |
| from timeit import default_timer as timer | |
| username = "fmagot01" ## Complete your username | |
| model_id = f"{username}/distil-wav2vec2-finetuned-giga-speech" | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline("audio-classification", model=model_id, device=device) | |
| def predict_trunc(filepath): | |
| preprocessed = pipe.preprocess(filepath) | |
| truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30) | |
| model_outputs = pipe.forward(truncated) | |
| outputs = pipe.postprocess(model_outputs) | |
| return outputs | |
| def classify_audio(filepath): | |
| """ | |
| Goes from | |
| [{'score': 0.8339303731918335, 'label': 'Gaming'}, | |
| {'score': 0.11914275586605072, 'label': 'Audiobook'},] | |
| to | |
| {"Gaming": 0.8339303731918335, "Audiobook":0.11914275586605072} | |
| """ | |
| start_time = timer() | |
| #preds = pipe(filepath) | |
| preds = predict_trunc(filepath) | |
| outputs = {} | |
| pred_time = round(timer() - start_time, 5) | |
| for p in preds: | |
| outputs[p["label"]] = p["score"] | |
| return outputs, pred_time | |
| #return outputs | |
| title = "Classifier of Audio Files" | |
| description = """ | |
| This demo shows the application of the [distil-wav2vec2](https://huggingface.co/OthmaneJ/distil-wav2vec2) model fine tuned to the [gigaspeech](https://huggingface.co/datasets/speechcolab/gigaspeech) dataset. It will classify the audio provided to the domain of the content in it. | |
| """ | |
| filenames = ["audiobook.wav", "arts.wav", "news.wav"] | |
| filenames = [[f"./{f}"] for f in filenames] | |
| demo = gr.Interface( | |
| fn=classify_audio, | |
| inputs=gr.Audio(type="filepath"), | |
| outputs=[gr.outputs.Label(label="Predictions"), | |
| gr.Number(label="Prediction time (s)") | |
| ], | |
| title=title, | |
| description=description, | |
| examples=filenames, | |
| ) | |
| demo.launch() | |