Spaces:
Sleeping
Sleeping
Update common/model.py
Browse files- common/model.py +122 -122
common/model.py
CHANGED
|
@@ -1,123 +1,123 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from typing import Optional
|
| 3 |
-
import torch
|
| 4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
-
|
| 6 |
-
class PoetryModel:
|
| 7 |
-
"""
|
| 8 |
-
Minimal wrapper for two choices:
|
| 9 |
-
- HuggingFace Llama 3.1 8B Instruct
|
| 10 |
-
- OpenAI gpt-5-mini
|
| 11 |
-
|
| 12 |
-
Use model_name="llama3.1_8b" or "openai".
|
| 13 |
-
"""
|
| 14 |
-
|
| 15 |
-
HF_MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 16 |
-
OPENAI_MODEL_ID = "gpt-5-mini"
|
| 17 |
-
|
| 18 |
-
def __init__(
|
| 19 |
-
self,
|
| 20 |
-
model_name: Optional[str] = None,
|
| 21 |
-
device: str = "cpu",
|
| 22 |
-
openai_api_key: Optional[str] = None,
|
| 23 |
-
use_llama_guard: bool = False
|
| 24 |
-
):
|
| 25 |
-
self.device = device
|
| 26 |
-
self.model_type = "hf"
|
| 27 |
-
self.openai_client = None
|
| 28 |
-
self.tokenizer = None
|
| 29 |
-
self.model = None
|
| 30 |
-
self.use_llama_guard = use_llama_guard
|
| 31 |
-
self.guard_model = None
|
| 32 |
-
self.guard_tokenizer = None
|
| 33 |
-
|
| 34 |
-
model_name =
|
| 35 |
-
|
| 36 |
-
if model_name == "openai":
|
| 37 |
-
self.model_type = "openai"
|
| 38 |
-
self.model_name = self.OPENAI_MODEL_ID
|
| 39 |
-
key = openai_api_key or os.getenv("OPENAI_API_KEY")
|
| 40 |
-
if not key:
|
| 41 |
-
raise ValueError("OPENAI_API_KEY missing for OpenAI usage.")
|
| 42 |
-
try:
|
| 43 |
-
from openai import OpenAI
|
| 44 |
-
self.openai_client = OpenAI(api_key=key)
|
| 45 |
-
except ImportError:
|
| 46 |
-
raise ImportError("Install OpenAI client: pip install openai")
|
| 47 |
-
elif model_name == "llama3.1_8b":
|
| 48 |
-
self.model_name = self.HF_MODEL_ID
|
| 49 |
-
self._load_hf()
|
| 50 |
-
else:
|
| 51 |
-
raise ValueError("model_name must be 'llama3.1_8b' or 'openai'.")
|
| 52 |
-
|
| 53 |
-
if self.use_llama_guard:
|
| 54 |
-
self._load_llama_guard()
|
| 55 |
-
|
| 56 |
-
def _load_hf(self):
|
| 57 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True)
|
| 58 |
-
if self.tokenizer.pad_token is None:
|
| 59 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 60 |
-
dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 61 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
-
self.model_name,
|
| 63 |
-
dtype=dtype,
|
| 64 |
-
trust_remote_code=True,
|
| 65 |
-
low_cpu_mem_usage=True
|
| 66 |
-
)
|
| 67 |
-
self.model.to(self.device)
|
| 68 |
-
|
| 69 |
-
def _load_llama_guard(self):
|
| 70 |
-
try:
|
| 71 |
-
guard_id = "meta-llama/LlamaGuard-7b"
|
| 72 |
-
self.guard_tokenizer = AutoTokenizer.from_pretrained(guard_id)
|
| 73 |
-
self.guard_model = AutoModelForCausalLM.from_pretrained(guard_id)
|
| 74 |
-
self.guard_model.to(self.device)
|
| 75 |
-
except Exception as e:
|
| 76 |
-
print(f"Skipping LlamaGuard: {e}")
|
| 77 |
-
self.use_llama_guard = False
|
| 78 |
-
|
| 79 |
-
def _check_with_llama_guard(self, text: str) -> bool:
|
| 80 |
-
if not (self.use_llama_guard and self.guard_model):
|
| 81 |
-
return True
|
| 82 |
-
try:
|
| 83 |
-
prompt = f"[INST] Is this safe for children? {text} [/INST]"
|
| 84 |
-
inputs = self.guard_tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 85 |
-
out = self.guard_model.generate(**inputs, max_new_tokens=16)
|
| 86 |
-
resp = self.guard_tokenizer.decode(out[0], skip_special_tokens=True).lower()
|
| 87 |
-
return "safe" in resp
|
| 88 |
-
except Exception:
|
| 89 |
-
return True
|
| 90 |
-
|
| 91 |
-
def generate(self, prompt: str, max_tokens: int = 128, temperature: float = 0.7) -> str:
|
| 92 |
-
if self.model_type == "openai":
|
| 93 |
-
try:
|
| 94 |
-
resp = self.openai_client.responses.create(
|
| 95 |
-
model=self.model_name,
|
| 96 |
-
input=prompt,
|
| 97 |
-
text={
|
| 98 |
-
"verbosity": "medium"
|
| 99 |
-
}
|
| 100 |
-
)
|
| 101 |
-
text = (resp.output_text or "").strip()
|
| 102 |
-
except Exception as e:
|
| 103 |
-
return f"Error: {e}"
|
| 104 |
-
else:
|
| 105 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(self.device)
|
| 106 |
-
gen = self.model.generate(
|
| 107 |
-
**inputs,
|
| 108 |
-
max_new_tokens=max_tokens,
|
| 109 |
-
temperature=temperature,
|
| 110 |
-
do_sample=True,
|
| 111 |
-
top_k=50,
|
| 112 |
-
top_p=0.95,
|
| 113 |
-
pad_token_id=self.tokenizer.pad_token_id
|
| 114 |
-
)
|
| 115 |
-
decoded = self.tokenizer.decode(gen[0], skip_special_tokens=True)
|
| 116 |
-
if decoded.startswith(prompt):
|
| 117 |
-
text = decoded[len(prompt):].strip()
|
| 118 |
-
else:
|
| 119 |
-
text = decoded.strip()
|
| 120 |
-
|
| 121 |
-
if self.use_llama_guard and not self._check_with_llama_guard(text):
|
| 122 |
-
return "Content filtered for safety."
|
| 123 |
return text
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
class PoetryModel:
|
| 7 |
+
"""
|
| 8 |
+
Minimal wrapper for two choices:
|
| 9 |
+
- HuggingFace Llama 3.1 8B Instruct
|
| 10 |
+
- OpenAI gpt-5-mini
|
| 11 |
+
|
| 12 |
+
Use model_name="llama3.1_8b" or "openai".
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
HF_MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 16 |
+
OPENAI_MODEL_ID = "gpt-5-mini"
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
model_name: Optional[str] = None,
|
| 21 |
+
device: str = "cpu",
|
| 22 |
+
openai_api_key: Optional[str] = None,
|
| 23 |
+
use_llama_guard: bool = False
|
| 24 |
+
):
|
| 25 |
+
self.device = device
|
| 26 |
+
self.model_type = "hf"
|
| 27 |
+
self.openai_client = None
|
| 28 |
+
self.tokenizer = None
|
| 29 |
+
self.model = None
|
| 30 |
+
self.use_llama_guard = use_llama_guard
|
| 31 |
+
self.guard_model = None
|
| 32 |
+
self.guard_tokenizer = None
|
| 33 |
+
|
| 34 |
+
model_name = os.getenv("DEFAULT_MODEL")
|
| 35 |
+
|
| 36 |
+
if model_name == "openai":
|
| 37 |
+
self.model_type = "openai"
|
| 38 |
+
self.model_name = self.OPENAI_MODEL_ID
|
| 39 |
+
key = openai_api_key or os.getenv("OPENAI_API_KEY")
|
| 40 |
+
if not key:
|
| 41 |
+
raise ValueError("OPENAI_API_KEY missing for OpenAI usage.")
|
| 42 |
+
try:
|
| 43 |
+
from openai import OpenAI
|
| 44 |
+
self.openai_client = OpenAI(api_key=key)
|
| 45 |
+
except ImportError:
|
| 46 |
+
raise ImportError("Install OpenAI client: pip install openai")
|
| 47 |
+
elif model_name == "llama3.1_8b":
|
| 48 |
+
self.model_name = self.HF_MODEL_ID
|
| 49 |
+
self._load_hf()
|
| 50 |
+
else:
|
| 51 |
+
raise ValueError("model_name must be 'llama3.1_8b' or 'openai'.")
|
| 52 |
+
|
| 53 |
+
if self.use_llama_guard:
|
| 54 |
+
self._load_llama_guard()
|
| 55 |
+
|
| 56 |
+
def _load_hf(self):
|
| 57 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True)
|
| 58 |
+
if self.tokenizer.pad_token is None:
|
| 59 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 60 |
+
dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 61 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
self.model_name,
|
| 63 |
+
dtype=dtype,
|
| 64 |
+
trust_remote_code=True,
|
| 65 |
+
low_cpu_mem_usage=True
|
| 66 |
+
)
|
| 67 |
+
self.model.to(self.device)
|
| 68 |
+
|
| 69 |
+
def _load_llama_guard(self):
|
| 70 |
+
try:
|
| 71 |
+
guard_id = "meta-llama/LlamaGuard-7b"
|
| 72 |
+
self.guard_tokenizer = AutoTokenizer.from_pretrained(guard_id)
|
| 73 |
+
self.guard_model = AutoModelForCausalLM.from_pretrained(guard_id)
|
| 74 |
+
self.guard_model.to(self.device)
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"Skipping LlamaGuard: {e}")
|
| 77 |
+
self.use_llama_guard = False
|
| 78 |
+
|
| 79 |
+
def _check_with_llama_guard(self, text: str) -> bool:
|
| 80 |
+
if not (self.use_llama_guard and self.guard_model):
|
| 81 |
+
return True
|
| 82 |
+
try:
|
| 83 |
+
prompt = f"[INST] Is this safe for children? {text} [/INST]"
|
| 84 |
+
inputs = self.guard_tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 85 |
+
out = self.guard_model.generate(**inputs, max_new_tokens=16)
|
| 86 |
+
resp = self.guard_tokenizer.decode(out[0], skip_special_tokens=True).lower()
|
| 87 |
+
return "safe" in resp
|
| 88 |
+
except Exception:
|
| 89 |
+
return True
|
| 90 |
+
|
| 91 |
+
def generate(self, prompt: str, max_tokens: int = 128, temperature: float = 0.7) -> str:
|
| 92 |
+
if self.model_type == "openai":
|
| 93 |
+
try:
|
| 94 |
+
resp = self.openai_client.responses.create(
|
| 95 |
+
model=self.model_name,
|
| 96 |
+
input=prompt,
|
| 97 |
+
text={
|
| 98 |
+
"verbosity": "medium"
|
| 99 |
+
}
|
| 100 |
+
)
|
| 101 |
+
text = (resp.output_text or "").strip()
|
| 102 |
+
except Exception as e:
|
| 103 |
+
return f"Error: {e}"
|
| 104 |
+
else:
|
| 105 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(self.device)
|
| 106 |
+
gen = self.model.generate(
|
| 107 |
+
**inputs,
|
| 108 |
+
max_new_tokens=max_tokens,
|
| 109 |
+
temperature=temperature,
|
| 110 |
+
do_sample=True,
|
| 111 |
+
top_k=50,
|
| 112 |
+
top_p=0.95,
|
| 113 |
+
pad_token_id=self.tokenizer.pad_token_id
|
| 114 |
+
)
|
| 115 |
+
decoded = self.tokenizer.decode(gen[0], skip_special_tokens=True)
|
| 116 |
+
if decoded.startswith(prompt):
|
| 117 |
+
text = decoded[len(prompt):].strip()
|
| 118 |
+
else:
|
| 119 |
+
text = decoded.strip()
|
| 120 |
+
|
| 121 |
+
if self.use_llama_guard and not self._check_with_llama_guard(text):
|
| 122 |
+
return "Content filtered for safety."
|
| 123 |
return text
|