Spaces:
Sleeping
Sleeping
File size: 13,966 Bytes
45c71f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import random
import re
from typing import List, Tuple, Optional, Dict
import nltk
from nltk.corpus import wordnet as wn
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet', quiet=True)
BANNED_WORDS = {
"fuck", "shit", "damn", "sex", "violence", "kill", "death", "weapon",
"drug", "hate", "stupid", "idiot", "dumb", "ugly", "fat", "racist"
}
UNSAFE_KEYWORDS = {
"violence", "weapon", "gun", "knife", "blood", "murder", "kill", "death",
"sex", "sexual", "porn", "nude", "naked", "drug", "cocaine", "weed",
"hate", "racist", "nazi", "terror", "bomb", "suicide"
}
def check_input_safety(text: str) -> Tuple[bool, str]:
"""Check if input text is safe for children.
Returns:
Tuple of (is_safe: bool, reason: str)
"""
if not text or not text.strip():
return True, ""
text_lower = text.lower()
# Check for banned words
for word in BANNED_WORDS:
if word in text_lower:
return False, f"Input contains inappropriate word: '{word}'"
# Check for unsafe keywords
for keyword in UNSAFE_KEYWORDS:
if keyword in text_lower:
return False, f"Input contains unsafe keyword: '{keyword}'"
# Check for excessive caps (yelling)
if len(text) > 10 and sum(1 for c in text if c.isupper()) / len(text) > 0.7:
return False, "Please don't use all caps"
return True, ""
def filter_output(text: str) -> str:
"""Filter and clean poem output from model."""
# Remove common unwanted patterns
text = re.sub(r'(?i)(here is|here\'s).*?(poem|verse).*?:', '', text)
text = re.sub(r'(?i)^(poem|title|verse).*?:', '', text, flags=re.MULTILINE)
text = re.sub(r'\*\*.*?\*\*', '', text) # Remove markdown bold
text = re.sub(r'#{1,6}\s+.*', '', text) # Remove markdown headers
text = re.sub(r'---+', '', text) # Remove separators
text = re.sub(r'##\s+Guidelines.*', '', text, flags=re.DOTALL) # Remove guidelines if leaked
text = re.sub(r'<.*?>', '', text) # Remove any remaining placeholders
# Split into lines and filter
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Remove lines that look like instructions or metadata
poem_lines = []
for line in lines:
lower_line = line.lower()
# Skip instruction-like lines
if any(skip in lower_line for skip in ['guideline', 'parameter', 'instruction', 'format', 'length:', 'age:', 'theme:', 'interest:', 'description:', '- **', 'output only']):
continue
# Skip numbered instruction lines
if re.match(r'^\d+\.\s+\*\*', line):
continue
poem_lines.append(line)
# Rejoin the clean poem
result = '\n'.join(poem_lines)
# Filter banned words
tokens = result.split()
filtered = []
for token in tokens:
clean = token.lower().strip('.,!?')
if clean in BANNED_WORDS:
filtered.append("***")
else:
filtered.append(token)
return " ".join(filtered)
def load_prompt_template(filepath: str) -> str:
"""Load prompt template from markdown file."""
with open(filepath, 'r', encoding='utf-8') as f:
return f.read()
def fill_prompt_template(template: str, **kwargs) -> str:
"""Replace placeholders like <age>, <theme> with actual values."""
result = template
for key, value in kwargs.items():
placeholder = f"<{key}>"
result = result.replace(placeholder, str(value))
return result
def select_words_to_blank(poem: str, difficulty: str, age: int, model) -> List[str]:
"""Use AI model to intelligently select words to blank based on difficulty and age.
Args:
poem: The complete poem text
difficulty: Easy, Medium, or Hard
age: Reader's age for appropriate word selection
model: The PoetryModel instance
Returns:
List of words to blank out (lowercase)
"""
if difficulty == "Easy":
n_words = 3
instruction = "3 simple, common words that are easy to guess from context"
elif difficulty == "Medium":
n_words = 6
instruction = "6 moderately challenging words with some ambiguity"
else: # Hard
n_words = 9
instruction = "9 key thematic words and challenging vocabulary with high ambiguity"
prompt = f"""Select exactly {n_words} words from this poem to remove for a fill-in-the-blank exercise.
Age: {age} years old
Difficulty: {difficulty}
Poem:
{poem}
Instructions:
- Choose {instruction}
- For {difficulty} difficulty, select words appropriate for age {age}
- Consider context clues and ambiguity level
- Return ONLY the {n_words} words, one per line, nothing else
Selected words:"""
try:
response = model.generate(prompt, max_tokens=512, temperature=0.3)
print(f"\n{'='*60}\nAI WORD SELECTION\n{'='*60}")
print(f"Difficulty: {difficulty} | Age: {age}")
print(f"AI Response:\n{response}")
# Parse the response to extract words
selected = []
for line in response.strip().split('\n'):
word = line.strip().strip('.,!?-*•"\'1234567890. ').lower()
if word and len(word) > 1 and word not in selected:
selected.append(word)
if len(selected) >= n_words:
break
print(f"Parsed words: {selected}")
print(f"{'='*60}\n")
return selected[:n_words] if selected else []
except Exception as e:
print(f"Error selecting words with model: {e}")
return []
def create_fill_in_blank(poem: str, difficulty: str, selected_words: List[str] = None) -> Tuple[str, List[str], List[int], List[str]]:
"""Create fill-in-blank exercise from poem with exact positions.
Args:
poem: The complete poem text
difficulty: Easy (3 blanks), Medium (6 blanks), Hard (9 blanks)
selected_words: Optional list of specific words to blank (from AI model)
Returns:
Tuple of (blanked_poem, correct_answers_in_order, positions, all_poem_words)
"""
words = poem.split()
# Determine number of blanks based on difficulty
if difficulty == "Easy":
n_blanks = 3
elif difficulty == "Medium":
n_blanks = 6
else: # Hard
n_blanks = 9
# If specific words provided by AI model, use those
blank_indices = []
if selected_words:
for idx, word in enumerate(words):
clean_word = word.strip('.,!?').lower()
if clean_word in [w.lower() for w in selected_words]:
blank_indices.append(idx)
if len(blank_indices) >= n_blanks:
break
# Fallback if AI didn't provide enough words
if len(blank_indices) < n_blanks:
candidates = [i for i, w in enumerate(words) if len(w.strip('.,!?')) > 4 and i not in blank_indices]
if len(candidates) < (n_blanks - len(blank_indices)):
candidates = [i for i, w in enumerate(words) if len(w.strip('.,!?')) > 3 and i not in blank_indices]
additional = random.sample(candidates, min(n_blanks - len(blank_indices), len(candidates)))
blank_indices.extend(additional)
if not blank_indices:
return poem, [], [], words
# Sort positions for consistent ordering
blank_indices = sorted(blank_indices[:n_blanks])
# Store correct answers in order of appearance
correct_answers = []
positions = []
blanked_words = words.copy()
for idx in blank_indices:
original_word = words[idx].strip('.,!?')
correct_answers.append(original_word)
positions.append(idx)
# Replace with uniform blank (15 underscores)
blanked_words[idx] = "_______________"
blanked_poem = " ".join(blanked_words)
return blanked_poem, correct_answers, positions, words
def get_word_definition(word: str) -> Optional[str]:
"""Get word definition from WordNet."""
synsets = wn.synsets(word)
if synsets:
return synsets[0].definition().lower()
return None
def rank_definitions(definitions: List[str], correct_definition: str, use_ai: bool = False, model = None) -> List[Tuple[int, float]]:
"""Rank player definitions by similarity to correct definition.
Returns:
List of tuples (player_index, score) sorted by score descending
"""
def jaccard(a: str, b: str) -> float:
a_set = set(a.split())
b_set = set(b.split())
if not a_set or not b_set:
return 0.0
return len(a_set & b_set) / len(a_set | b_set)
scores = []
for idx, definition in enumerate(definitions):
if not definition or not definition.strip():
scores.append((idx, 0.0))
continue
# Calculate Jaccard similarity
jaccard_score = jaccard(definition.lower(), correct_definition.lower())
# If AI scoring is enabled and model is provided
if use_ai and model:
try:
prompt = f"""Rate how well this definition matches the correct definition on a scale of 0-10.
Correct definition: {correct_definition}
Player definition: {definition}
Respond with only a number between 0 and 10."""
ai_response = model.generate(prompt, max_tokens=128, temperature=0.3)
# Extract number from response
ai_score = float(re.findall(r'\d+\.?\d*', ai_response)[0]) / 10.0 if re.findall(r'\d+\.?\d*', ai_response) else 0.0
# Combine AI score (70%) and Jaccard score (30%)
final_score = 0.7 * ai_score + 0.3 * jaccard_score
except:
final_score = jaccard_score
else:
final_score = jaccard_score
scores.append((idx, final_score))
scores.sort(key=lambda x: x[1], reverse=True)
return scores
def load_vocabulary(filepath: str) -> dict:
"""Load vocabulary dictionary from markdown file."""
vocab = {"Easy": [], "Medium": [], "Hard": []}
current_level = None
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line.startswith("## Easy"):
current_level = "Easy"
elif line.startswith("## Medium"):
current_level = "Medium"
elif line.startswith("## Hard"):
current_level = "Hard"
elif line and current_level and line.startswith("-"):
word = line.lstrip("- ").strip()
vocab[current_level].append(word)
return vocab
def load_themes(filepath: str) -> List[str]:
"""Load themes from markdown file."""
themes = []
try:
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line and line.startswith("-"):
theme = line.lstrip("- ").strip()
if theme:
themes.append(theme)
except FileNotFoundError:
# Return default themes if file not found
themes = ["Nature", "Animals", "Friendship", "Adventure", "Family", "Seasons", "Ocean", "Space", "Dreams", "Magic"]
return themes
def load_interests(filepath: str) -> List[str]:
"""Load interests/hobbies from markdown file."""
interests = []
try:
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line and line.startswith("-"):
interest = line.lstrip("- ").strip()
if interest:
interests.append(interest)
except FileNotFoundError:
# Return default interests if file not found
interests = [
"Sports", "Music", "Art", "Reading", "Dancing", "Video Games",
"Dinosaurs", "Superheroes", "Princesses", "Science", "Cooking",
"Animals", "Cars", "Robots", "Movies", "Swimming"
]
return interests
def save_leaderboard_score(filepath: str, difficulty: str, player_name: str, score: float):
"""Save a player's score to the leaderboard file."""
import json
import os
# Load existing leaderboard or create new
if os.path.exists(filepath):
with open(filepath, 'r', encoding='utf-8') as f:
leaderboard = json.load(f)
else:
leaderboard = {"Easy": [], "Medium": [], "Hard": []}
# Add new score
if difficulty in leaderboard:
leaderboard[difficulty].append({"name": player_name, "score": score})
# Sort by score descending and keep top 100
leaderboard[difficulty].sort(key=lambda x: x["score"], reverse=True)
leaderboard[difficulty] = leaderboard[difficulty][:100]
# Save back to file
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(leaderboard, f, indent=2)
def get_leaderboard(filepath: str, difficulty: str, top_n: int = 10) -> List[Dict]:
"""Get top N players from leaderboard for a difficulty level."""
import json
import os
if not os.path.exists(filepath):
return []
try:
with open(filepath, 'r', encoding='utf-8') as f:
leaderboard = json.load(f)
if difficulty in leaderboard:
return leaderboard[difficulty][:top_n]
except:
return []
return []
|