map + toggle: need to cleanup code
Browse files- app.py +77 -4
- graphs/leaderboard.py +271 -237
- graphs/model_market_share.py +12 -2
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
from dash import Dash, html, dcc, Input, Output
|
| 2 |
import pandas as pd
|
| 3 |
import dash_mantine_components as dmc
|
| 4 |
from graphs.model_market_share import create_stacked_area_chart, create_world_map, create_range_slider
|
| 5 |
-
from graphs.leaderboard import create_leaderboard
|
| 6 |
from graphs.model_characteristics import create_concentration_chart, create_line_plot
|
| 7 |
from graphs.tree import generate_model_treemap
|
| 8 |
|
|
@@ -266,8 +266,7 @@ def update_world_map(value):
|
|
| 266 |
start_time = pd.to_datetime(value[0], unit='s').strftime('%Y-%m-%d')
|
| 267 |
end_time = pd.to_datetime(value[1], unit='s').strftime('%Y-%m-%d')
|
| 268 |
updated_fig = create_world_map(
|
| 269 |
-
|
| 270 |
-
start_time=start_time, end_time=end_time
|
| 271 |
)
|
| 272 |
updated_fig.update_layout(font_family="Inter")
|
| 273 |
return updated_fig
|
|
@@ -309,6 +308,80 @@ def update_stacked_area(value):
|
|
| 309 |
return updated_fig
|
| 310 |
return model_market_share_area
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
# Run the app
|
| 313 |
if __name__ == '__main__':
|
| 314 |
app.run(debug=True)
|
|
|
|
| 1 |
+
from dash import Dash, html, dcc, Input, Output, State
|
| 2 |
import pandas as pd
|
| 3 |
import dash_mantine_components as dmc
|
| 4 |
from graphs.model_market_share import create_stacked_area_chart, create_world_map, create_range_slider
|
| 5 |
+
from graphs.leaderboard import create_leaderboard, get_top_n_leaderboard, render_table, render_table_content
|
| 6 |
from graphs.model_characteristics import create_concentration_chart, create_line_plot
|
| 7 |
from graphs.tree import generate_model_treemap
|
| 8 |
|
|
|
|
| 266 |
start_time = pd.to_datetime(value[0], unit='s').strftime('%Y-%m-%d')
|
| 267 |
end_time = pd.to_datetime(value[1], unit='s').strftime('%Y-%m-%d')
|
| 268 |
updated_fig = create_world_map(
|
| 269 |
+
filtered_df
|
|
|
|
| 270 |
)
|
| 271 |
updated_fig.update_layout(font_family="Inter")
|
| 272 |
return updated_fig
|
|
|
|
| 308 |
return updated_fig
|
| 309 |
return model_market_share_area
|
| 310 |
|
| 311 |
+
@app.callback(
|
| 312 |
+
Output("top_countries-table", "children"),
|
| 313 |
+
Output("top_countries-toggle", "children"),
|
| 314 |
+
Input("top_countries-toggle", "n_clicks"),
|
| 315 |
+
State("top_countries-toggle", "children"),
|
| 316 |
+
)
|
| 317 |
+
def update_top_countries(n_clicks, current_label):
|
| 318 |
+
print(n_clicks, current_label)
|
| 319 |
+
# Handle initial page load
|
| 320 |
+
if current_label is None:
|
| 321 |
+
current_label = "▼ Show Top 50"
|
| 322 |
+
|
| 323 |
+
if n_clicks == 0:
|
| 324 |
+
top_n = 10
|
| 325 |
+
new_label = current_label
|
| 326 |
+
elif "Show Top 50" in current_label:
|
| 327 |
+
top_n, new_label = 50, "▼ Show Top 100"
|
| 328 |
+
elif "Show Top 100" in current_label:
|
| 329 |
+
top_n, new_label = 100, "▲ Show Less"
|
| 330 |
+
else:
|
| 331 |
+
top_n, new_label = 10, "▼ Show Top 50"
|
| 332 |
+
|
| 333 |
+
df, download_df = get_top_n_leaderboard(filtered_df, "org_country_single", top_n)
|
| 334 |
+
return render_table_content(df, download_df, chip_color="#FCE8E6", filename="top_countries"), new_label
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
@app.callback(
|
| 338 |
+
Output("top_developers-table", "children"),
|
| 339 |
+
Output("top_developers-toggle", "children"),
|
| 340 |
+
Input("top_developers-toggle", "n_clicks"),
|
| 341 |
+
State("top_developers-toggle", "children"),
|
| 342 |
+
)
|
| 343 |
+
def update_top_developers(n_clicks, current_label):
|
| 344 |
+
# Handle initial page load
|
| 345 |
+
if current_label is None:
|
| 346 |
+
current_label = "▼ Show More"
|
| 347 |
+
|
| 348 |
+
if n_clicks == 0:
|
| 349 |
+
top_n = 10
|
| 350 |
+
new_label = current_label
|
| 351 |
+
elif "Show Top 50" in current_label:
|
| 352 |
+
top_n, new_label = 50, "▼ Show Top 100"
|
| 353 |
+
elif "Show Top 100" in current_label:
|
| 354 |
+
top_n, new_label = 100, "▲ Show Less"
|
| 355 |
+
else:
|
| 356 |
+
top_n, new_label = 10, "▼ Show Top 50"
|
| 357 |
+
|
| 358 |
+
df, download_df = get_top_n_leaderboard(filtered_df, "author", top_n)
|
| 359 |
+
return render_table_content(df, download_df, chip_color="#E6F4EA", filename="top_developers"), new_label
|
| 360 |
+
|
| 361 |
+
@app.callback(
|
| 362 |
+
Output("top_models-table", "children"),
|
| 363 |
+
Output("top_models-toggle", "children"),
|
| 364 |
+
Input("top_models-toggle", "n_clicks"),
|
| 365 |
+
State("top_models-toggle", "children"),
|
| 366 |
+
)
|
| 367 |
+
def update_top_models(n_clicks, current_label):
|
| 368 |
+
# Handle initial page load
|
| 369 |
+
if current_label is None:
|
| 370 |
+
current_label = "▼ Show More"
|
| 371 |
+
|
| 372 |
+
if n_clicks == 0:
|
| 373 |
+
top_n = 10
|
| 374 |
+
new_label = current_label
|
| 375 |
+
elif "Show Top 50" in current_label:
|
| 376 |
+
top_n, new_label = 50, "▼ Show Top 100"
|
| 377 |
+
elif "Show Top 100" in current_label:
|
| 378 |
+
top_n, new_label = 100, "▲ Show Less"
|
| 379 |
+
else:
|
| 380 |
+
top_n, new_label = 10, "▼ Show Top 50"
|
| 381 |
+
|
| 382 |
+
df, download_df = get_top_n_leaderboard(filtered_df, "model", top_n)
|
| 383 |
+
return render_table_content(df, download_df, chip_color="#E8F0FE", filename="top_models"), new_label
|
| 384 |
+
|
| 385 |
# Run the app
|
| 386 |
if __name__ == '__main__':
|
| 387 |
app.run(debug=True)
|
graphs/leaderboard.py
CHANGED
|
@@ -2,8 +2,21 @@ import pandas as pd
|
|
| 2 |
from dash import html, dcc
|
| 3 |
import base64
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"USA": "🇺🇸",
|
| 8 |
"China": "🇨🇳",
|
| 9 |
"Germany": "🇩🇪",
|
|
@@ -23,245 +36,144 @@ def create_leaderboard(filtered_df, start_time=None, top_n=10):
|
|
| 23 |
"International/Online": "🌐",
|
| 24 |
}
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
meta_cols_map = {
|
| 35 |
-
"org_country_single": ["org_country_single"],
|
| 36 |
-
"author": ["org_country_single", "author", "merged_country_groups_single"],
|
| 37 |
-
"model": ["org_country_single", "author", "merged_country_groups_single", "merged_modality", "downloads"]
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
# Filter by time
|
| 41 |
-
if start_time is not None:
|
| 42 |
-
filtered_df = filtered_df[(filtered_df["created"] >= start_time) & (filtered_df["time"] >= start_time)]
|
| 43 |
-
|
| 44 |
-
if filtered_df.empty:
|
| 45 |
-
return html.Div("No data in selected range")
|
| 46 |
-
|
| 47 |
-
# Merge HF and USA
|
| 48 |
-
filtered_df["org_country_single"] = filtered_df["org_country_single"].replace({"HF": "United States of America"})
|
| 49 |
-
# Merge International and Online
|
| 50 |
-
filtered_df["org_country_single"] = filtered_df["org_country_single"].replace({"International": "International/Online", "Online": "International/Online"})
|
| 51 |
-
|
| 52 |
-
# Function to get top N leaderboard
|
| 53 |
-
def get_top_n_leaderboard(group_col, top_n=10):
|
| 54 |
-
top = filtered_df.groupby(group_col)["downloads"].sum().nlargest(top_n).reset_index().rename(columns={group_col: "Name", "downloads": "Total Value"})
|
| 55 |
-
total_value = top["Total Value"].sum()
|
| 56 |
-
top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0
|
| 57 |
-
|
| 58 |
-
# Create a downloadable version of the leaderboard
|
| 59 |
-
download_top = top.copy()
|
| 60 |
-
download_top["Total Value"] = download_top["Total Value"].astype(int)
|
| 61 |
-
download_top["% of total"] = download_top["% of total"].round(2)
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Function to build metadata chips
|
| 81 |
-
def build_metadata(nm):
|
| 82 |
-
meta = meta_map.get(nm, {})
|
| 83 |
-
chips = []
|
| 84 |
-
# Countries
|
| 85 |
-
for c in meta.get("org_country_single", []):
|
| 86 |
-
if c == "United States of America":
|
| 87 |
-
c = "USA"
|
| 88 |
-
if c == "user":
|
| 89 |
-
c = "User"
|
| 90 |
-
chips.append((country_icon_map.get(c, ""), c))
|
| 91 |
-
# Author
|
| 92 |
-
for a in meta.get("author", []):
|
| 93 |
-
icon = company_icon_map.get(a, "")
|
| 94 |
-
if icon == "":
|
| 95 |
-
if meta.get("merged_country_groups_single", ["User"])[0] != "User":
|
| 96 |
-
icon = "🏢"
|
| 97 |
-
else:
|
| 98 |
-
icon = "👤"
|
| 99 |
-
chips.append((icon, a))
|
| 100 |
-
# Downloads
|
| 101 |
-
# Sum downloads if multiple entries
|
| 102 |
-
total_downloads = sum(d for d in meta.get("downloads", []) if pd.notna(d)) # Check if d is not NaN
|
| 103 |
-
if total_downloads:
|
| 104 |
-
chips.append(("⬇️", f"{int(total_downloads):,}"))
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
download_info_df = pd.DataFrame(download_info_list)
|
| 144 |
-
download_top = pd.concat([download_top, download_info_df], axis=1)
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
if isinstance(icon, str) and icon.endswith(('.png', '.jpg', '.jpeg', '.svg')):
|
| 173 |
-
chips.append(
|
| 174 |
-
html.Span([
|
| 175 |
-
html.Img(src=icon, style={"height": "18px", "marginRight": "6px"}),
|
| 176 |
-
name
|
| 177 |
-
],
|
| 178 |
-
style={
|
| 179 |
-
"backgroundColor": chip_color,
|
| 180 |
-
"padding": "4px 10px",
|
| 181 |
-
"borderRadius": "12px",
|
| 182 |
-
"margin": "2px",
|
| 183 |
-
"display": "inline-flex",
|
| 184 |
-
"alignItems": "left",
|
| 185 |
-
"fontSize": "14px"
|
| 186 |
-
})
|
| 187 |
-
)
|
| 188 |
-
else:
|
| 189 |
-
chips.append(chip(f"{icon} {name}", chip_color))
|
| 190 |
-
return html.Div(
|
| 191 |
-
chips,
|
| 192 |
-
style={"display": "flex", "flexWrap": "wrap", "justifyContent": "left"}
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
# Progress bar for % of total
|
| 196 |
-
def progress_bar(percent, bar_color="#4CAF50"):
|
| 197 |
-
return html.Div(
|
| 198 |
-
style={
|
| 199 |
-
"position": "relative",
|
| 200 |
-
"backgroundColor": "#E0E0E0",
|
| 201 |
-
"borderRadius": "8px",
|
| 202 |
-
"height": "20px",
|
| 203 |
-
"width": "100%",
|
| 204 |
-
"overflow": "hidden",
|
| 205 |
-
},
|
| 206 |
-
children=[
|
| 207 |
-
html.Div(
|
| 208 |
-
style={
|
| 209 |
-
"backgroundColor": bar_color,
|
| 210 |
-
"width": f"{percent}%",
|
| 211 |
-
"height": "100%",
|
| 212 |
-
"borderRadius": "8px",
|
| 213 |
-
"transition": "width 0.5s",
|
| 214 |
-
}
|
| 215 |
-
),
|
| 216 |
-
html.Div(
|
| 217 |
-
f"{percent:.1f}%",
|
| 218 |
-
style={
|
| 219 |
-
"position": "absolute",
|
| 220 |
-
"top": 0,
|
| 221 |
-
"left": "50%",
|
| 222 |
-
"transform": "translateX(-50%)",
|
| 223 |
-
"color": "black",
|
| 224 |
-
"fontWeight": "bold",
|
| 225 |
-
"fontSize": "12px",
|
| 226 |
-
"lineHeight": "20px",
|
| 227 |
-
"textAlign": "center",
|
| 228 |
-
}
|
| 229 |
-
)
|
| 230 |
-
]
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
-
# Helper to convert DataFrame to CSV and encode for download
|
| 234 |
-
def df_to_download_link(df, filename):
|
| 235 |
-
csv_string = df.to_csv(index=False)
|
| 236 |
-
b64 = base64.b64encode(csv_string.encode()).decode()
|
| 237 |
-
return html.Div(
|
| 238 |
-
html.A(
|
| 239 |
-
"Download CSV",
|
| 240 |
-
id=f"download-{filename}",
|
| 241 |
-
download=f"{filename}.csv",
|
| 242 |
-
href=f"data:text/csv;base64,{b64}",
|
| 243 |
-
target="_blank",
|
| 244 |
-
style={
|
| 245 |
-
"display": "inline-block",
|
| 246 |
-
"marginBottom": "10px",
|
| 247 |
-
"marginRight": "15px",
|
| 248 |
-
"marginTop": "30px",
|
| 249 |
-
"padding": "6px 16px",
|
| 250 |
-
"backgroundColor": "#2196F3",
|
| 251 |
-
"color": "white",
|
| 252 |
-
"borderRadius": "6px",
|
| 253 |
-
"textDecoration": "none",
|
| 254 |
-
"fontWeight": "bold",
|
| 255 |
-
"fontSize": "14px"
|
| 256 |
-
}
|
| 257 |
-
),
|
| 258 |
-
style={"textAlign": "right"}
|
| 259 |
-
)
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
html.Table([
|
| 266 |
html.Thead(html.Tr([
|
| 267 |
html.Th("Rank", style={"backgroundColor": "#F0F0F0", "textAlign": "left"}),
|
|
@@ -277,9 +189,131 @@ def create_leaderboard(filtered_df, start_time=None, top_n=10):
|
|
| 277 |
html.Td(progress_bar(row["% of total"], bar_color), style={"textAlign": "center"})
|
| 278 |
]) for idx, row in df.iterrows()
|
| 279 |
])
|
| 280 |
-
], style={"borderCollapse": "collapse", "width": "100%"}),
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
# Layout with 3 stacked tables
|
| 285 |
layout = html.Div([
|
|
|
|
| 2 |
from dash import html, dcc
|
| 3 |
import base64
|
| 4 |
|
| 5 |
+
button_style = {
|
| 6 |
+
"display": "inline-block",
|
| 7 |
+
"marginBottom": "10px",
|
| 8 |
+
"marginRight": "15px",
|
| 9 |
+
"marginTop": "30px",
|
| 10 |
+
"padding": "6px 16px",
|
| 11 |
+
"backgroundColor": "#2196F3",
|
| 12 |
+
"color": "white",
|
| 13 |
+
"borderRadius": "6px",
|
| 14 |
+
"textDecoration": "none",
|
| 15 |
+
"fontWeight": "bold",
|
| 16 |
+
"fontSize": "14px"
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
country_icon_map = {
|
| 20 |
"USA": "🇺🇸",
|
| 21 |
"China": "🇨🇳",
|
| 22 |
"Germany": "🇩🇪",
|
|
|
|
| 36 |
"International/Online": "🌐",
|
| 37 |
}
|
| 38 |
|
| 39 |
+
company_icon_map = {
|
| 40 |
+
"google": "../assets/icons/google.png",
|
| 41 |
+
"distilbert": "../assets/icons/hugging-face.png",
|
| 42 |
+
"sentence-transformers": "../assets/icons/hugging-face.png",
|
| 43 |
+
"facebook": "../assets/icons/meta.png",
|
| 44 |
+
"openai": "../assets/icons/openai.png",
|
| 45 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
meta_cols_map = {
|
| 48 |
+
"org_country_single": ["org_country_single"],
|
| 49 |
+
"author": ["org_country_single", "author", "merged_country_groups_single"],
|
| 50 |
+
"model": ["org_country_single", "author", "merged_country_groups_single", "merged_modality", "downloads"]
|
| 51 |
+
}
|
| 52 |
|
| 53 |
+
# Chip renderer
|
| 54 |
+
def chip(text, bg_color="#F0F0F0"):
|
| 55 |
+
return html.Span(
|
| 56 |
+
text,
|
| 57 |
+
style={
|
| 58 |
+
"backgroundColor": bg_color,
|
| 59 |
+
"padding": "4px 10px",
|
| 60 |
+
"borderRadius": "12px",
|
| 61 |
+
"margin": "2px",
|
| 62 |
+
"display": "inline-flex",
|
| 63 |
+
"alignItems": "center",
|
| 64 |
+
"fontSize": "14px"
|
| 65 |
+
}
|
| 66 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
# Progress bar for % of total
|
| 69 |
+
def progress_bar(percent, bar_color="#4CAF50"):
|
| 70 |
+
return html.Div(
|
| 71 |
+
style={
|
| 72 |
+
"position": "relative",
|
| 73 |
+
"backgroundColor": "#E0E0E0",
|
| 74 |
+
"borderRadius": "8px",
|
| 75 |
+
"height": "20px",
|
| 76 |
+
"width": "100%",
|
| 77 |
+
"overflow": "hidden",
|
| 78 |
+
},
|
| 79 |
+
children=[
|
| 80 |
+
html.Div(
|
| 81 |
+
style={
|
| 82 |
+
"backgroundColor": bar_color,
|
| 83 |
+
"width": f"{percent}%",
|
| 84 |
+
"height": "100%",
|
| 85 |
+
"borderRadius": "8px",
|
| 86 |
+
"transition": "width 0.5s",
|
| 87 |
+
}
|
| 88 |
+
),
|
| 89 |
+
html.Div(
|
| 90 |
+
f"{percent:.1f}%",
|
| 91 |
+
style={
|
| 92 |
+
"position": "absolute",
|
| 93 |
+
"top": 0,
|
| 94 |
+
"left": "50%",
|
| 95 |
+
"transform": "translateX(-50%)",
|
| 96 |
+
"color": "black",
|
| 97 |
+
"fontWeight": "bold",
|
| 98 |
+
"fontSize": "12px",
|
| 99 |
+
"lineHeight": "20px",
|
| 100 |
+
"textAlign": "center",
|
| 101 |
+
}
|
| 102 |
+
)
|
| 103 |
+
]
|
| 104 |
+
)
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Helper to convert DataFrame to CSV and encode for download
|
| 107 |
+
def df_to_download_link(df, filename):
|
| 108 |
+
csv_string = df.to_csv(index=False)
|
| 109 |
+
b64 = base64.b64encode(csv_string.encode()).decode()
|
| 110 |
+
return html.Div(
|
| 111 |
+
html.A(
|
| 112 |
+
"Download CSV",
|
| 113 |
+
id=f"download-{filename}",
|
| 114 |
+
download=f"{filename}.csv",
|
| 115 |
+
href=f"data:text/csv;base64,{b64}",
|
| 116 |
+
target="_blank",
|
| 117 |
+
style=button_style
|
| 118 |
+
),
|
| 119 |
+
style={"textAlign": "right"}
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
# Render multiple chips in one row
|
| 123 |
+
def render_chips(metadata_list, chip_color="#F0F0F0"):
|
| 124 |
+
chips = []
|
| 125 |
+
for icon, name in metadata_list:
|
| 126 |
+
if isinstance(icon, str) and icon.endswith(('.png', '.jpg', '.jpeg', '.svg')):
|
| 127 |
+
chips.append(
|
| 128 |
+
html.Span([
|
| 129 |
+
html.Img(src=icon, style={"height": "18px", "marginRight": "6px"}),
|
| 130 |
+
name
|
| 131 |
+
],
|
| 132 |
+
style={
|
| 133 |
+
"backgroundColor": chip_color,
|
| 134 |
+
"padding": "4px 10px",
|
| 135 |
+
"borderRadius": "12px",
|
| 136 |
+
"margin": "2px",
|
| 137 |
+
"display": "inline-flex",
|
| 138 |
+
"alignItems": "left",
|
| 139 |
+
"fontSize": "14px"
|
| 140 |
+
})
|
| 141 |
+
)
|
| 142 |
+
else:
|
| 143 |
+
chips.append(chip(f"{icon} {name}", chip_color))
|
| 144 |
+
return html.Div(
|
| 145 |
+
chips,
|
| 146 |
+
style={"display": "flex", "flexWrap": "wrap", "justifyContent": "left"}
|
| 147 |
+
)
|
| 148 |
|
| 149 |
+
def render_table_content(df, download_df, chip_color="#F0F0F0", bar_color="#4CAF50", filename="data"):
|
| 150 |
+
return html.Div([
|
| 151 |
+
html.Table([
|
| 152 |
+
html.Thead(html.Tr([
|
| 153 |
+
html.Th("Rank", style={"backgroundColor": "#F0F0F0", "textAlign": "left"}),
|
| 154 |
+
html.Th("Name", style={"backgroundColor": "#F0F0F0", "textAlign": "left"}),
|
| 155 |
+
html.Th("Metadata", style={"backgroundColor": "#F0F0F0", "textAlign": "left", "marginRight": "10px"}),
|
| 156 |
+
html.Th("% of Total", style={"backgroundColor": "#F0F0F0", "textAlign": "left"})
|
| 157 |
+
])),
|
| 158 |
+
html.Tbody([
|
| 159 |
+
html.Tr([
|
| 160 |
+
html.Td(idx+1, style={"textAlign": "center"}),
|
| 161 |
+
html.Td(row["Name"], style={"textAlign": "left"}),
|
| 162 |
+
html.Td(render_chips(row["Metadata"], chip_color)),
|
| 163 |
+
html.Td(progress_bar(row["% of total"], bar_color), style={"textAlign": "center"})
|
| 164 |
+
]) for idx, row in df.iterrows()
|
| 165 |
+
])
|
| 166 |
+
], style={"borderCollapse": "collapse", "width": "100%"}),
|
| 167 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
# Table renderer
|
| 170 |
+
def render_table(df, download_df, title, chip_color="#F0F0F0", bar_color="#4CAF50", filename="data"):
|
| 171 |
+
return html.Div(id=f"{filename}-div", children=[
|
| 172 |
+
html.Div([
|
| 173 |
+
html.H4(title, style={"textAlign": "left", "marginBottom": "10px", "fontSize": "20px", "display": "inline-block"}),
|
| 174 |
+
df_to_download_link(download_df, filename)
|
| 175 |
+
], style={"display": "flex", "alignItems": "center", "justifyContent": "space-between"}),
|
| 176 |
+
html.Div(id=f"{filename}-table", children=[
|
| 177 |
html.Table([
|
| 178 |
html.Thead(html.Tr([
|
| 179 |
html.Th("Rank", style={"backgroundColor": "#F0F0F0", "textAlign": "left"}),
|
|
|
|
| 189 |
html.Td(progress_bar(row["% of total"], bar_color), style={"textAlign": "center"})
|
| 190 |
]) for idx, row in df.iterrows()
|
| 191 |
])
|
| 192 |
+
], style={"borderCollapse": "collapse", "width": "100%", "border": "none"}),
|
| 193 |
+
]),
|
| 194 |
+
html.Div([
|
| 195 |
+
html.Button(
|
| 196 |
+
"▼ Show Top 50",
|
| 197 |
+
id=f"{filename}-toggle",
|
| 198 |
+
n_clicks=0,
|
| 199 |
+
style={**button_style, "border": "none"}
|
| 200 |
+
)
|
| 201 |
+
], style={"marginTop": "5px", "textAlign": "left"})
|
| 202 |
+
], style={"marginBottom": "20px"})
|
| 203 |
+
|
| 204 |
+
# Function to get top N leaderboard
|
| 205 |
+
def get_top_n_leaderboard(filtered_df, group_col, top_n=10):
|
| 206 |
+
top = filtered_df.groupby(group_col)["downloads"].sum().nlargest(top_n).reset_index().rename(columns={group_col: "Name", "downloads": "Total Value"})
|
| 207 |
+
total_value = top["Total Value"].sum()
|
| 208 |
+
top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0
|
| 209 |
+
|
| 210 |
+
# Create a downloadable version of the leaderboard
|
| 211 |
+
download_top = top.copy()
|
| 212 |
+
download_top["Total Value"] = download_top["Total Value"].astype(int)
|
| 213 |
+
download_top["% of total"] = download_top["% of total"].round(2)
|
| 214 |
+
|
| 215 |
+
top["Name"].replace("User", "user", inplace=True)
|
| 216 |
+
|
| 217 |
+
# All relevant metadata columns
|
| 218 |
+
meta_cols = meta_cols_map.get(group_col, [])
|
| 219 |
+
# Collect all metadata per top n for each category (country, author, model)
|
| 220 |
+
meta_map = {}
|
| 221 |
+
download_map = {}
|
| 222 |
+
for name in top["Name"]:
|
| 223 |
+
name_data = filtered_df[filtered_df[group_col] == name]
|
| 224 |
+
meta_map[name] = {}
|
| 225 |
+
download_map[name] = {}
|
| 226 |
+
for col in meta_cols:
|
| 227 |
+
if col in name_data.columns:
|
| 228 |
+
unique_vals = name_data[col].unique()
|
| 229 |
+
meta_map[name][col] = list(unique_vals)
|
| 230 |
+
download_map[name][col] = list(unique_vals)
|
| 231 |
+
|
| 232 |
+
# Function to build metadata chips
|
| 233 |
+
def build_metadata(nm):
|
| 234 |
+
meta = meta_map.get(nm, {})
|
| 235 |
+
chips = []
|
| 236 |
+
# Countries
|
| 237 |
+
for c in meta.get("org_country_single", []):
|
| 238 |
+
if c == "United States of America":
|
| 239 |
+
c = "USA"
|
| 240 |
+
if c == "user":
|
| 241 |
+
c = "User"
|
| 242 |
+
chips.append((country_icon_map.get(c, ""), c))
|
| 243 |
+
# Author
|
| 244 |
+
for a in meta.get("author", []):
|
| 245 |
+
icon = company_icon_map.get(a, "")
|
| 246 |
+
if icon == "":
|
| 247 |
+
if meta.get("merged_country_groups_single", ["User"])[0] != "User":
|
| 248 |
+
icon = "🏢"
|
| 249 |
+
else:
|
| 250 |
+
icon = "👤"
|
| 251 |
+
chips.append((icon, a))
|
| 252 |
+
# Downloads
|
| 253 |
+
# Sum downloads if multiple entries
|
| 254 |
+
total_downloads = sum(d for d in meta.get("downloads", []) if pd.notna(d)) # Check if d is not NaN
|
| 255 |
+
if total_downloads:
|
| 256 |
+
chips.append(("⬇️", f"{int(total_downloads):,}"))
|
| 257 |
+
|
| 258 |
+
# Modality
|
| 259 |
+
for m in meta.get("merged_modality", []):
|
| 260 |
+
chips.append(("", m))
|
| 261 |
+
|
| 262 |
+
# Estimated Parameters
|
| 263 |
+
for p in meta.get("estimated_parameters", []):
|
| 264 |
+
if pd.notna(p): # Check if p is not NaN
|
| 265 |
+
if p >= 1e9:
|
| 266 |
+
p_str = f"{p/1e9:.1f}B"
|
| 267 |
+
elif p >= 1e6:
|
| 268 |
+
p_str = f"{p/1e6:.1f}M"
|
| 269 |
+
elif p >= 1e3:
|
| 270 |
+
p_str = f"{p/1e3:.1f}K"
|
| 271 |
+
else:
|
| 272 |
+
p_str = str(p)
|
| 273 |
+
chips.append(("⚙️", p_str))
|
| 274 |
+
return chips
|
| 275 |
+
|
| 276 |
+
# Function to create downloadable dataframe
|
| 277 |
+
def build_download_metadata(nm):
|
| 278 |
+
meta = download_map.get(nm, {})
|
| 279 |
+
download_info = {}
|
| 280 |
+
for col in meta_cols:
|
| 281 |
+
# don't add empty columns
|
| 282 |
+
if col not in meta or not meta[col]:
|
| 283 |
+
continue
|
| 284 |
+
vals = meta.get(col, [])
|
| 285 |
+
if vals:
|
| 286 |
+
# Join list into a single string for CSV
|
| 287 |
+
download_info[col] = ", ".join(str(v) for v in vals)
|
| 288 |
+
else:
|
| 289 |
+
download_info[col] = ""
|
| 290 |
+
return download_info
|
| 291 |
+
|
| 292 |
+
# Apply metadata builder to top dataframe
|
| 293 |
+
top["Metadata"] = top["Name"].map(build_metadata)
|
| 294 |
+
download_info_list = [build_download_metadata(nm) for nm in download_top["Name"]]
|
| 295 |
+
download_info_df = pd.DataFrame(download_info_list)
|
| 296 |
+
download_top = pd.concat([download_top, download_info_df], axis=1)
|
| 297 |
+
|
| 298 |
+
return top[["Name", "Metadata", "% of total"]], download_top
|
| 299 |
+
|
| 300 |
+
def create_leaderboard(filtered_df, start_time=None, top_n=10):
|
| 301 |
+
# Filter by time
|
| 302 |
+
if start_time is not None:
|
| 303 |
+
filtered_df = filtered_df[(filtered_df["created"] >= start_time) & (filtered_df["time"] >= start_time)]
|
| 304 |
+
|
| 305 |
+
if filtered_df.empty:
|
| 306 |
+
return html.Div("No data in selected range")
|
| 307 |
+
|
| 308 |
+
# Merge HF and USA
|
| 309 |
+
filtered_df["org_country_single"] = filtered_df["org_country_single"].replace({"HF": "United States of America"})
|
| 310 |
+
# Merge International and Online
|
| 311 |
+
filtered_df["org_country_single"] = filtered_df["org_country_single"].replace({"International": "International/Online", "Online": "International/Online"})
|
| 312 |
+
|
| 313 |
+
# Build leaderboards
|
| 314 |
+
top_countries, download_top_countries = get_top_n_leaderboard(filtered_df, "org_country_single", top_n)
|
| 315 |
+
top_developers, download_top_developers = get_top_n_leaderboard(filtered_df, "author", top_n)
|
| 316 |
+
top_models, download_top_models = get_top_n_leaderboard(filtered_df, "model", top_n)
|
| 317 |
|
| 318 |
# Layout with 3 stacked tables
|
| 319 |
layout = html.Div([
|
graphs/model_market_share.py
CHANGED
|
@@ -234,7 +234,13 @@ def create_world_map(
|
|
| 234 |
specs=[[{"type": "geo"}]],
|
| 235 |
)
|
| 236 |
|
| 237 |
-
downloads_by_country =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
# Prepare top countries for annotation
|
| 240 |
total_downloads = float(downloads_by_country['downloads'].sum())
|
|
@@ -246,9 +252,11 @@ def create_world_map(
|
|
| 246 |
hover_text.append(
|
| 247 |
f"<b>{row['org_country_single']}</b><br>"
|
| 248 |
f"Avg Downloads: {row['pct']:.1f}% of total<br>"
|
| 249 |
-
f"Avg Value: {row['downloads']:.6f}"
|
| 250 |
)
|
| 251 |
|
|
|
|
|
|
|
|
|
|
| 252 |
# Add choropleth to plot
|
| 253 |
fig.add_trace(
|
| 254 |
go.Choropleth(
|
|
@@ -268,6 +276,8 @@ def create_world_map(
|
|
| 268 |
],
|
| 269 |
colorbar=dict(
|
| 270 |
title="Avg % of Total Downloads",
|
|
|
|
|
|
|
| 271 |
tickfont=dict(size=12),
|
| 272 |
len=0.6,
|
| 273 |
x=1.02,
|
|
|
|
| 234 |
specs=[[{"type": "geo"}]],
|
| 235 |
)
|
| 236 |
|
| 237 |
+
downloads_by_country = (
|
| 238 |
+
df.groupby(['org_country_single', 'country_code'])['downloads']
|
| 239 |
+
.sum()
|
| 240 |
+
.reset_index()
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
print(downloads_by_country.columns)
|
| 244 |
|
| 245 |
# Prepare top countries for annotation
|
| 246 |
total_downloads = float(downloads_by_country['downloads'].sum())
|
|
|
|
| 252 |
hover_text.append(
|
| 253 |
f"<b>{row['org_country_single']}</b><br>"
|
| 254 |
f"Avg Downloads: {row['pct']:.1f}% of total<br>"
|
|
|
|
| 255 |
)
|
| 256 |
|
| 257 |
+
linear_ticks = [0.01, 0.1, 10, 50, 100] # percent values
|
| 258 |
+
log_ticks = np.log10(linear_ticks) # what you're actually plotting
|
| 259 |
+
|
| 260 |
# Add choropleth to plot
|
| 261 |
fig.add_trace(
|
| 262 |
go.Choropleth(
|
|
|
|
| 276 |
],
|
| 277 |
colorbar=dict(
|
| 278 |
title="Avg % of Total Downloads",
|
| 279 |
+
tickvals=log_ticks, # positions in log space
|
| 280 |
+
ticktext=[f"{t}%" for t in linear_ticks], # labels shown
|
| 281 |
tickfont=dict(size=12),
|
| 282 |
len=0.6,
|
| 283 |
x=1.02,
|