modify leaderboards
Browse files- app.py +24 -21
- assets/icons/google.png +0 -0
- assets/icons/meta.png +0 -0
- assets/icons/openai.png +0 -0
- graphs/__pycache__/model_market_share.cpython-39.pyc +0 -0
- graphs/leaderboard.py +223 -0
- graphs/model_market_share.py +1 -146
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from dash import Dash, html, dcc, Input, Output
|
| 2 |
import pandas as pd
|
| 3 |
-
from graphs.model_market_share import create_stacked_area_chart, create_world_map, create_range_slider
|
|
|
|
| 4 |
from graphs.model_characteristics import create_concentration_chart, create_line_plot
|
| 5 |
|
| 6 |
# Initialize the app
|
|
@@ -8,6 +9,7 @@ app = Dash()
|
|
| 8 |
server = app.server
|
| 9 |
|
| 10 |
# Load pre-processed data frames
|
|
|
|
| 11 |
model_topk_df = pd.read_pickle("data_frames/model_topk_df.pkl")
|
| 12 |
model_gini_df = pd.read_pickle("data_frames/model_gini_df.pkl")
|
| 13 |
model_hhi_df = pd.read_pickle("data_frames/model_hhi_df.pkl")
|
|
@@ -82,10 +84,6 @@ world_map = create_world_map(
|
|
| 82 |
country_concentration_df, "time", "metric", "value"
|
| 83 |
)
|
| 84 |
|
| 85 |
-
leaderboard = create_leaderboard(
|
| 86 |
-
country_concentration_df, author_concentration_df, model_concentration_df
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
slider = create_range_slider(
|
| 90 |
model_topk_df
|
| 91 |
)
|
|
@@ -175,9 +173,14 @@ app.layout = html.Div(
|
|
| 175 |
dcc.Graph(id='world-map-with-slider'),
|
| 176 |
style={'display': 'flex', 'justifyContent': 'center'}
|
| 177 |
),
|
| 178 |
-
dcc.Graph(id='leaderboard'),
|
| 179 |
], style={'marginBottom': 12})
|
| 180 |
]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
dcc.Tab(label='Model Characteristics', children=[
|
| 182 |
dcc.Graph(id='language-concentration-chart'),
|
| 183 |
html.Div([
|
|
@@ -243,21 +246,21 @@ def update_map(relayout_data):
|
|
| 243 |
return world_map
|
| 244 |
|
| 245 |
# On slider change, update leaderboard
|
| 246 |
-
@app.callback(
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
)
|
| 250 |
-
def update_leaderboard(relayout_data):
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
|
| 262 |
# On slider change, update stacked area chart
|
| 263 |
@app.callback(
|
|
|
|
| 1 |
from dash import Dash, html, dcc, Input, Output
|
| 2 |
import pandas as pd
|
| 3 |
+
from graphs.model_market_share import create_stacked_area_chart, create_world_map, create_range_slider
|
| 4 |
+
from graphs.leaderboard import create_leaderboard
|
| 5 |
from graphs.model_characteristics import create_concentration_chart, create_line_plot
|
| 6 |
|
| 7 |
# Initialize the app
|
|
|
|
| 9 |
server = app.server
|
| 10 |
|
| 11 |
# Load pre-processed data frames
|
| 12 |
+
filtered_df = pd.read_pickle("data_frames/filtered_df.pkl")
|
| 13 |
model_topk_df = pd.read_pickle("data_frames/model_topk_df.pkl")
|
| 14 |
model_gini_df = pd.read_pickle("data_frames/model_gini_df.pkl")
|
| 15 |
model_hhi_df = pd.read_pickle("data_frames/model_hhi_df.pkl")
|
|
|
|
| 84 |
country_concentration_df, "time", "metric", "value"
|
| 85 |
)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
slider = create_range_slider(
|
| 88 |
model_topk_df
|
| 89 |
)
|
|
|
|
| 173 |
dcc.Graph(id='world-map-with-slider'),
|
| 174 |
style={'display': 'flex', 'justifyContent': 'center'}
|
| 175 |
),
|
| 176 |
+
# dcc.Graph(id='leaderboard'),
|
| 177 |
], style={'marginBottom': 12})
|
| 178 |
]),
|
| 179 |
+
dcc.Tab(label='Leaderboard', children=[
|
| 180 |
+
create_leaderboard(
|
| 181 |
+
filtered_df, country_concentration_df, author_concentration_df, model_concentration_df
|
| 182 |
+
)
|
| 183 |
+
]),
|
| 184 |
dcc.Tab(label='Model Characteristics', children=[
|
| 185 |
dcc.Graph(id='language-concentration-chart'),
|
| 186 |
html.Div([
|
|
|
|
| 246 |
return world_map
|
| 247 |
|
| 248 |
# On slider change, update leaderboard
|
| 249 |
+
# @app.callback(
|
| 250 |
+
# Output('leaderboard', 'figure'),
|
| 251 |
+
# [Input('time-slider', 'relayoutData')]
|
| 252 |
+
# )
|
| 253 |
+
# def update_leaderboard(relayout_data):
|
| 254 |
+
# if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
|
| 255 |
+
# start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
|
| 256 |
+
# end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
|
| 257 |
+
# updated_fig = create_leaderboard(
|
| 258 |
+
# country_concentration_df, author_concentration_df, model_concentration_df, start_time=start_time, end_time=end_time
|
| 259 |
+
# )
|
| 260 |
+
# updated_fig.update_layout(font_family="Inter")
|
| 261 |
+
# return updated_fig
|
| 262 |
+
# else:
|
| 263 |
+
# return leaderboard
|
| 264 |
|
| 265 |
# On slider change, update stacked area chart
|
| 266 |
@app.callback(
|
assets/icons/google.png
ADDED
|
|
assets/icons/meta.png
ADDED
|
|
assets/icons/openai.png
ADDED
|
|
graphs/__pycache__/model_market_share.cpython-39.pyc
CHANGED
|
Binary files a/graphs/__pycache__/model_market_share.cpython-39.pyc and b/graphs/__pycache__/model_market_share.cpython-39.pyc differ
|
|
|
graphs/leaderboard.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from dash import html
|
| 3 |
+
|
| 4 |
+
def create_leaderboard(filtered_df, country_df, developer_df, model_df, start_time=None, end_time=None, top_n=10):
|
| 5 |
+
country_icon_map = {
|
| 6 |
+
"United States of America": "🇺🇸",
|
| 7 |
+
"China": "🇨🇳",
|
| 8 |
+
"Germany": "🇩🇪",
|
| 9 |
+
"France": "🇫🇷",
|
| 10 |
+
"India": "🇮🇳",
|
| 11 |
+
"Italy": "🇮🇹",
|
| 12 |
+
"Japan": "🇯🇵",
|
| 13 |
+
"South Korea": "🇰🇷",
|
| 14 |
+
"United Kingdom": "🇬🇧",
|
| 15 |
+
"Canada": "🇨🇦",
|
| 16 |
+
"Brazil": "🇧🇷",
|
| 17 |
+
"Australia": "🇦🇺",
|
| 18 |
+
"Unknown": "❓",
|
| 19 |
+
"Finland": "🇫🇮",
|
| 20 |
+
"Lebanon": "🇱🇧",
|
| 21 |
+
"HF": "../assets/icons/hugging-face.png",
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
company_icon_map = {
|
| 25 |
+
"google": "../assets/icons/google.png",
|
| 26 |
+
"distilbert": "../assets/icons/hugging-face.png",
|
| 27 |
+
"sentence-transformers": "../assets/icons/hugging-face.png",
|
| 28 |
+
"facebook": "../assets/icons/meta.png",
|
| 29 |
+
"openai": "../assets/icons/openai.png",
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Ensure datetime
|
| 33 |
+
for df in [country_df, developer_df, model_df]:
|
| 34 |
+
df["time"] = pd.to_datetime(df["time"])
|
| 35 |
+
|
| 36 |
+
# Merge country info for developers/models
|
| 37 |
+
developer_df = developer_df.merge(
|
| 38 |
+
filtered_df[["country", "author", "org_or_user", "model"]].drop_duplicates(subset=["author"]),
|
| 39 |
+
left_on="metric", right_on="author", how="left"
|
| 40 |
+
).drop(columns=["metric"])
|
| 41 |
+
|
| 42 |
+
model_df = model_df.merge(
|
| 43 |
+
filtered_df[["country", "author", "downloads", "org_or_user", "model"]].drop_duplicates(subset=["model"]),
|
| 44 |
+
left_on="metric", right_on="model", how="left"
|
| 45 |
+
).drop(columns=["metric"])
|
| 46 |
+
|
| 47 |
+
# Rename metric columns
|
| 48 |
+
country_df = country_df.rename(columns={"metric": "country"})
|
| 49 |
+
|
| 50 |
+
# Filter by time
|
| 51 |
+
start_time = start_time or country_df["time"].min()
|
| 52 |
+
end_time = end_time or country_df["time"].max()
|
| 53 |
+
country_df = country_df[(country_df["time"] >= start_time) & (country_df["time"] <= end_time)]
|
| 54 |
+
developer_df = developer_df[(developer_df["time"] >= start_time) & (developer_df["time"] <= end_time)]
|
| 55 |
+
model_df = model_df[(model_df["time"] >= start_time) & (model_df["time"] <= end_time)]
|
| 56 |
+
|
| 57 |
+
if country_df.empty and developer_df.empty and model_df.empty:
|
| 58 |
+
return html.Div("No data in selected range")
|
| 59 |
+
|
| 60 |
+
# Function to get top N leaderboard
|
| 61 |
+
def get_top_n_leaderboard(df, group_col, top_n=10):
|
| 62 |
+
top = (
|
| 63 |
+
df.groupby(group_col)["value"]
|
| 64 |
+
.sum()
|
| 65 |
+
.sort_values(ascending=False)
|
| 66 |
+
.head(top_n)
|
| 67 |
+
.reset_index()
|
| 68 |
+
.rename(columns={group_col: "Name", "value": "Total Value"})
|
| 69 |
+
)
|
| 70 |
+
total_value = top["Total Value"].sum()
|
| 71 |
+
top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0
|
| 72 |
+
|
| 73 |
+
# All relevant metadata columns
|
| 74 |
+
meta_cols = ["country", "author", "downloads", "org_or_user"]
|
| 75 |
+
# Collect all metadata per top n for each category (country, author, model)
|
| 76 |
+
meta_map = {}
|
| 77 |
+
for name in top["Name"]:
|
| 78 |
+
name_data = df[df[group_col] == name]
|
| 79 |
+
meta_map[name] = {}
|
| 80 |
+
for col in meta_cols:
|
| 81 |
+
if col in name_data.columns:
|
| 82 |
+
unique_vals = name_data[col].unique()
|
| 83 |
+
meta_map[name][col] = list(unique_vals)
|
| 84 |
+
|
| 85 |
+
# Function to build metadata chips
|
| 86 |
+
def build_metadata(nm):
|
| 87 |
+
meta = meta_map.get(nm, {})
|
| 88 |
+
chips = []
|
| 89 |
+
# Countries
|
| 90 |
+
for c in meta.get("country", []):
|
| 91 |
+
chips.append((country_icon_map.get(c, ""), c))
|
| 92 |
+
# Author
|
| 93 |
+
for a in meta.get("author", []):
|
| 94 |
+
chips.append((company_icon_map.get(a, ""), a))
|
| 95 |
+
# Downloads
|
| 96 |
+
for d in meta.get("downloads", []):
|
| 97 |
+
if pd.notna(d): # Check if d is not NaN
|
| 98 |
+
chips.append(("⬇️", f"{int(d):,}"))
|
| 99 |
+
# Org or User
|
| 100 |
+
for o in meta.get("org_or_user", []):
|
| 101 |
+
chips.append(("🏢" if o == "org" else "👤", "Org" if o == "org" else "User"))
|
| 102 |
+
return chips
|
| 103 |
+
|
| 104 |
+
# Apply metadata builder to top dataframe
|
| 105 |
+
top["Metadata"] = top["Name"].map(build_metadata)
|
| 106 |
+
|
| 107 |
+
return top[["Name", "Metadata", "% of total"]]
|
| 108 |
+
|
| 109 |
+
# Build leaderboards
|
| 110 |
+
top_countries = get_top_n_leaderboard(country_df, "country", top_n)
|
| 111 |
+
top_developers = get_top_n_leaderboard(developer_df, "author", top_n)
|
| 112 |
+
top_models = get_top_n_leaderboard(model_df, "model", top_n)
|
| 113 |
+
|
| 114 |
+
# Chip renderer
|
| 115 |
+
def chip(text, bg_color="#F0F0F0"):
|
| 116 |
+
return html.Span(
|
| 117 |
+
text,
|
| 118 |
+
style={
|
| 119 |
+
"backgroundColor": bg_color,
|
| 120 |
+
"padding": "4px 10px",
|
| 121 |
+
"borderRadius": "12px",
|
| 122 |
+
"margin": "2px",
|
| 123 |
+
"display": "inline-flex",
|
| 124 |
+
"alignItems": "center",
|
| 125 |
+
"fontSize": "14px"
|
| 126 |
+
}
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Render multiple chips in one row
|
| 130 |
+
def render_chips(metadata_list, chip_color="#F0F0F0"):
|
| 131 |
+
chips = []
|
| 132 |
+
for icon, name in metadata_list:
|
| 133 |
+
if isinstance(icon, str) and icon.endswith(('.png', '.jpg', '.jpeg', '.svg')):
|
| 134 |
+
chips.append(
|
| 135 |
+
html.Span([
|
| 136 |
+
html.Img(src=icon, style={"height": "18px", "marginRight": "6px"}),
|
| 137 |
+
name
|
| 138 |
+
],
|
| 139 |
+
style={
|
| 140 |
+
"backgroundColor": chip_color,
|
| 141 |
+
"padding": "4px 10px",
|
| 142 |
+
"borderRadius": "12px",
|
| 143 |
+
"margin": "2px",
|
| 144 |
+
"display": "inline-flex",
|
| 145 |
+
"alignItems": "center",
|
| 146 |
+
"fontSize": "14px"
|
| 147 |
+
})
|
| 148 |
+
)
|
| 149 |
+
else:
|
| 150 |
+
chips.append(chip(f"{icon} {name}", chip_color))
|
| 151 |
+
return html.Div(
|
| 152 |
+
chips,
|
| 153 |
+
style={"display": "flex", "flexWrap": "wrap", "justifyContent": "center"}
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Progress bar for % of total
|
| 157 |
+
def progress_bar(percent, bar_color="#4CAF50"):
|
| 158 |
+
return html.Div(
|
| 159 |
+
style={
|
| 160 |
+
"position": "relative",
|
| 161 |
+
"backgroundColor": "#E0E0E0",
|
| 162 |
+
"borderRadius": "8px",
|
| 163 |
+
"height": "20px",
|
| 164 |
+
"width": "100%",
|
| 165 |
+
"overflow": "hidden",
|
| 166 |
+
},
|
| 167 |
+
children=[
|
| 168 |
+
html.Div(
|
| 169 |
+
style={
|
| 170 |
+
"backgroundColor": bar_color,
|
| 171 |
+
"width": f"{percent}%",
|
| 172 |
+
"height": "100%",
|
| 173 |
+
"borderRadius": "8px",
|
| 174 |
+
"transition": "width 0.5s",
|
| 175 |
+
}
|
| 176 |
+
),
|
| 177 |
+
html.Div(
|
| 178 |
+
f"{percent:.1f}%",
|
| 179 |
+
style={
|
| 180 |
+
"position": "absolute",
|
| 181 |
+
"top": 0,
|
| 182 |
+
"left": "50%",
|
| 183 |
+
"transform": "translateX(-50%)",
|
| 184 |
+
"color": "black",
|
| 185 |
+
"fontWeight": "bold",
|
| 186 |
+
"fontSize": "12px",
|
| 187 |
+
"lineHeight": "20px",
|
| 188 |
+
"textAlign": "center",
|
| 189 |
+
}
|
| 190 |
+
)
|
| 191 |
+
]
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Table renderer
|
| 195 |
+
def render_table(df, title, chip_color="#F0F0F0", bar_color="#4CAF50"):
|
| 196 |
+
return html.Div([
|
| 197 |
+
html.H4(title, style={"textAlign": "center", "marginBottom": "10px", "fontSize": "20px"}),
|
| 198 |
+
html.Table([
|
| 199 |
+
html.Thead(html.Tr([
|
| 200 |
+
html.Th("Rank", style={"backgroundColor": "#F0F0F0"}),
|
| 201 |
+
html.Th("Name", style={"backgroundColor": "#F0F0F0"}),
|
| 202 |
+
html.Th("Metadata", style={"backgroundColor": "#F0F0F0"}),
|
| 203 |
+
html.Th("% of Total", style={"backgroundColor": "#F0F0F0"})
|
| 204 |
+
])),
|
| 205 |
+
html.Tbody([
|
| 206 |
+
html.Tr([
|
| 207 |
+
html.Td(idx+1, style={"textAlign": "center"}),
|
| 208 |
+
html.Td(row["Name"], style={"textAlign": "center"}),
|
| 209 |
+
html.Td(render_chips(row["Metadata"], chip_color), style={"textAlign": "center"}),
|
| 210 |
+
html.Td(progress_bar(row["% of total"], bar_color), style={"textAlign": "center"})
|
| 211 |
+
]) for idx, row in df.iterrows()
|
| 212 |
+
])
|
| 213 |
+
], style={"borderCollapse": "collapse", "width": "100%"})
|
| 214 |
+
], style={"marginBottom": "20px"})
|
| 215 |
+
|
| 216 |
+
# Layout with 3 stacked tables
|
| 217 |
+
layout = html.Div([
|
| 218 |
+
render_table(top_countries, "Top Countries", chip_color="#FCE8E6", bar_color="#FF6F61"),
|
| 219 |
+
render_table(top_developers, "Top Developers", chip_color="#E6F4EA", bar_color="#4CAF50"),
|
| 220 |
+
render_table(top_models, "Top Models", chip_color="#E8F0FE", bar_color="#2196F3"),
|
| 221 |
+
])
|
| 222 |
+
|
| 223 |
+
return layout
|
graphs/model_market_share.py
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
import plotly.graph_objects as go
|
| 2 |
from plotly.subplots import make_subplots
|
| 3 |
-
import pandas as pd
|
| 4 |
-
|
| 5 |
-
filtered_df = pd.read_pickle("data_frames/filtered_df.pkl")
|
| 6 |
|
| 7 |
def create_stacked_area_chart(
|
| 8 |
topk_df, gini_df, hhi_df, events, palette, start_time=None, end_time=None
|
|
@@ -393,146 +390,4 @@ def create_range_slider(df):
|
|
| 393 |
height=100
|
| 394 |
)
|
| 395 |
|
| 396 |
-
return fig
|
| 397 |
-
|
| 398 |
-
def create_leaderboard(country_df, developer_df, model_df, start_time=None, end_time=None, top_n=10):
|
| 399 |
-
# Country -> Emoji mapping
|
| 400 |
-
country_emoji_map = {
|
| 401 |
-
"United States of America": "🇺🇸",
|
| 402 |
-
"China": "🇨🇳",
|
| 403 |
-
"Germany": "🇩🇪",
|
| 404 |
-
"France": "🇫🇷",
|
| 405 |
-
"India": "🇮🇳",
|
| 406 |
-
"Italy": "🇮🇹",
|
| 407 |
-
"Japan": "🇯🇵",
|
| 408 |
-
"South Korea": "🇰🇷",
|
| 409 |
-
"United Kingdom": "🇬🇧",
|
| 410 |
-
"Canada": "🇨🇦",
|
| 411 |
-
"Brazil": "🇧🇷",
|
| 412 |
-
"Australia": "🇦🇺",
|
| 413 |
-
"Unknown": "❓",
|
| 414 |
-
"Finland": "🇫🇮",
|
| 415 |
-
"Lebanon": "🇱🇧 ",
|
| 416 |
-
}
|
| 417 |
-
|
| 418 |
-
# Ensure datetime
|
| 419 |
-
country_df["time"] = pd.to_datetime(country_df["time"])
|
| 420 |
-
developer_df["time"] = pd.to_datetime(developer_df["time"])
|
| 421 |
-
model_df["time"] = pd.to_datetime(model_df["time"])
|
| 422 |
-
|
| 423 |
-
# Add corresponding country info to developer_df and model_df, mapping "metric" to "author" and "metric" to "model"
|
| 424 |
-
# Merge with filtered_df to get country info
|
| 425 |
-
developer_df = developer_df.merge(
|
| 426 |
-
filtered_df[["author", "country"]].drop_duplicates(),
|
| 427 |
-
left_on="metric",
|
| 428 |
-
right_on="author",
|
| 429 |
-
how="left"
|
| 430 |
-
).rename(columns={"country": "country_metric"}).drop(columns=["author"])
|
| 431 |
-
model_df = model_df.merge(
|
| 432 |
-
filtered_df[["model", "country"]].drop_duplicates(),
|
| 433 |
-
left_on="metric",
|
| 434 |
-
right_on="model",
|
| 435 |
-
how="left"
|
| 436 |
-
).rename(columns={"country": "country_metric"}).drop(columns=["model"])
|
| 437 |
-
|
| 438 |
-
if start_time is None:
|
| 439 |
-
start_time = country_df["time"].min()
|
| 440 |
-
if end_time is None:
|
| 441 |
-
end_time = country_df["time"].max()
|
| 442 |
-
|
| 443 |
-
# Filter time range
|
| 444 |
-
country_df_filtered = country_df[
|
| 445 |
-
(country_df["time"] >= start_time) & (country_df["time"] <= end_time)
|
| 446 |
-
]
|
| 447 |
-
developer_df_filtered = developer_df[
|
| 448 |
-
(developer_df["time"] >= start_time) & (developer_df["time"] <= end_time)
|
| 449 |
-
]
|
| 450 |
-
model_df_filtered = model_df[
|
| 451 |
-
(model_df["time"] >= start_time) & (model_df["time"] <= end_time)
|
| 452 |
-
]
|
| 453 |
-
|
| 454 |
-
if country_df_filtered.empty and developer_df_filtered.empty and model_df_filtered.empty:
|
| 455 |
-
return go.Figure()
|
| 456 |
-
|
| 457 |
-
# Function to get top N leaderboard with percentage
|
| 458 |
-
def get_top_n_leaderboard(df, group_col, label, top_n=10):
|
| 459 |
-
top = (
|
| 460 |
-
df.groupby(group_col)["value"]
|
| 461 |
-
.sum()
|
| 462 |
-
.sort_values(ascending=False)
|
| 463 |
-
.head(top_n)
|
| 464 |
-
.reset_index()
|
| 465 |
-
.rename(columns={group_col: label, "value": "Total Value"})
|
| 466 |
-
)
|
| 467 |
-
total_value = top["Total Value"].sum()
|
| 468 |
-
if total_value > 0:
|
| 469 |
-
top["% of total"] = top["Total Value"] / total_value * 100
|
| 470 |
-
else:
|
| 471 |
-
top["% of total"] = 0
|
| 472 |
-
|
| 473 |
-
# add column with metadata (country emoji for country, country for developer/model)
|
| 474 |
-
if label == "Country":
|
| 475 |
-
top["Attributes"] = top[label].map(country_emoji_map).fillna("")
|
| 476 |
-
else:
|
| 477 |
-
# Get the country_metric for each developer/model with the already merged info
|
| 478 |
-
top = top.merge(
|
| 479 |
-
df[[group_col, "country_metric"]].drop_duplicates(),
|
| 480 |
-
left_on=label,
|
| 481 |
-
right_on=group_col,
|
| 482 |
-
how="left"
|
| 483 |
-
).drop(columns=[group_col])
|
| 484 |
-
top["Attributes"] = top["country_metric"].map(country_emoji_map).fillna("")
|
| 485 |
-
return top[[label, "Attributes", "% of total"]]
|
| 486 |
-
|
| 487 |
-
top_countries = get_top_n_leaderboard(country_df_filtered, "metric", "Country", top_n=top_n)
|
| 488 |
-
top_developers = get_top_n_leaderboard(developer_df_filtered, "metric", "Developer", top_n=top_n)
|
| 489 |
-
top_models = get_top_n_leaderboard(model_df_filtered, "metric", "Model", top_n=top_n)
|
| 490 |
-
|
| 491 |
-
# Create subplot grid with 3 columns
|
| 492 |
-
fig = make_subplots(
|
| 493 |
-
rows=1, cols=3,
|
| 494 |
-
subplot_titles=("Top Countries", "Top Developers", "Top Models"),
|
| 495 |
-
specs=[[{"type": "table"}, {"type": "table"}, {"type": "table"}]]
|
| 496 |
-
)
|
| 497 |
-
|
| 498 |
-
# Add country table
|
| 499 |
-
fig.add_trace(
|
| 500 |
-
go.Table(
|
| 501 |
-
header=dict(values=list(top_countries.columns),
|
| 502 |
-
fill_color="lightgrey", align="left"),
|
| 503 |
-
cells=dict(values=[top_countries[col] for col in top_countries.columns],
|
| 504 |
-
fill_color="white", align="left"),
|
| 505 |
-
),
|
| 506 |
-
row=1, col=1
|
| 507 |
-
)
|
| 508 |
-
|
| 509 |
-
# Add developer table
|
| 510 |
-
fig.add_trace(
|
| 511 |
-
go.Table(
|
| 512 |
-
header=dict(values=list(top_developers.columns),
|
| 513 |
-
fill_color="lightgrey", align="left"),
|
| 514 |
-
cells=dict(values=[top_developers[col] for col in top_developers.columns],
|
| 515 |
-
fill_color="white", align="left"),
|
| 516 |
-
),
|
| 517 |
-
row=1, col=2
|
| 518 |
-
)
|
| 519 |
-
|
| 520 |
-
# Add model table
|
| 521 |
-
fig.add_trace(
|
| 522 |
-
go.Table(
|
| 523 |
-
header=dict(values=list(top_models.columns),
|
| 524 |
-
fill_color="lightgrey", align="left"),
|
| 525 |
-
cells=dict(values=[top_models[col] for col in top_models.columns],
|
| 526 |
-
fill_color="white", align="left"),
|
| 527 |
-
),
|
| 528 |
-
row=1, col=3
|
| 529 |
-
)
|
| 530 |
-
|
| 531 |
-
fig.update_layout(
|
| 532 |
-
height=400,
|
| 533 |
-
showlegend=False,
|
| 534 |
-
title_text="Leaderboards"
|
| 535 |
-
)
|
| 536 |
-
|
| 537 |
-
return fig
|
| 538 |
-
|
|
|
|
| 1 |
import plotly.graph_objects as go
|
| 2 |
from plotly.subplots import make_subplots
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def create_stacked_area_chart(
|
| 5 |
topk_df, gini_df, hhi_df, events, palette, start_time=None, end_time=None
|
|
|
|
| 390 |
height=100
|
| 391 |
)
|
| 392 |
|
| 393 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|