1
commited on
Commit
·
7b7e62e
1
Parent(s):
65dcc19
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,14 +14,34 @@
|
|
| 14 |
|
| 15 |
import dataclasses
|
| 16 |
import json
|
|
|
|
|
|
|
| 17 |
from pathlib import Path
|
| 18 |
|
| 19 |
import gradio as gr
|
| 20 |
import torch
|
| 21 |
import spaces
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
from uno.flux.pipeline import UNOPipeline
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def get_examples(examples_dir: str = "assets/examples") -> list:
|
| 26 |
examples = Path(examples_dir)
|
| 27 |
ans = []
|
|
@@ -54,6 +74,7 @@ def create_demo(
|
|
| 54 |
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
| 55 |
offload: bool = False,
|
| 56 |
):
|
|
|
|
| 57 |
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
|
| 58 |
pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)
|
| 59 |
|
|
@@ -229,11 +250,117 @@ def create_demo(
|
|
| 229 |
],
|
| 230 |
)
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
return demo
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
if __name__ == "__main__":
|
| 235 |
from typing import Literal
|
| 236 |
-
|
| 237 |
from transformers import HfArgumentParser
|
| 238 |
|
| 239 |
@dataclasses.dataclass
|
|
@@ -245,10 +372,17 @@ if __name__ == "__main__":
|
|
| 245 |
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
|
| 246 |
)
|
| 247 |
port: int = 7860
|
|
|
|
| 248 |
|
| 249 |
parser = HfArgumentParser([AppArgs])
|
| 250 |
-
args_tuple = parser.parse_args_into_dataclasses()
|
| 251 |
args = args_tuple[0]
|
| 252 |
-
|
|
|
|
| 253 |
demo = create_demo(args.name, args.device, args.offload)
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
import dataclasses
|
| 16 |
import json
|
| 17 |
+
import base64
|
| 18 |
+
import io
|
| 19 |
from pathlib import Path
|
| 20 |
|
| 21 |
import gradio as gr
|
| 22 |
import torch
|
| 23 |
import spaces
|
| 24 |
+
from PIL import Image as PILImage
|
| 25 |
+
from fastapi import FastAPI, Body
|
| 26 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 27 |
|
| 28 |
from uno.flux.pipeline import UNOPipeline
|
| 29 |
|
| 30 |
+
# 创建FastAPI应用
|
| 31 |
+
app = FastAPI()
|
| 32 |
+
|
| 33 |
+
# 添加CORS中间件允许跨域请求
|
| 34 |
+
app.add_middleware(
|
| 35 |
+
CORSMiddleware,
|
| 36 |
+
allow_origins=["*"],
|
| 37 |
+
allow_credentials=True,
|
| 38 |
+
allow_methods=["*"],
|
| 39 |
+
allow_headers=["*"],
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# 设置全局pipeline变量
|
| 43 |
+
pipeline = None
|
| 44 |
+
|
| 45 |
def get_examples(examples_dir: str = "assets/examples") -> list:
|
| 46 |
examples = Path(examples_dir)
|
| 47 |
ans = []
|
|
|
|
| 74 |
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
| 75 |
offload: bool = False,
|
| 76 |
):
|
| 77 |
+
global pipeline
|
| 78 |
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
|
| 79 |
pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)
|
| 80 |
|
|
|
|
| 250 |
],
|
| 251 |
)
|
| 252 |
|
| 253 |
+
# 添加API文档
|
| 254 |
+
with gr.Accordion("API Documentation", open=False):
|
| 255 |
+
gr.Markdown("""
|
| 256 |
+
### API Usage
|
| 257 |
+
|
| 258 |
+
You can use the following endpoint to generate images programmatically:
|
| 259 |
+
|
| 260 |
+
**Endpoint:** `/api/generate`
|
| 261 |
+
|
| 262 |
+
**Method:** POST
|
| 263 |
+
|
| 264 |
+
**Request Body:**
|
| 265 |
+
```json
|
| 266 |
+
{
|
| 267 |
+
"prompt": "your text prompt",
|
| 268 |
+
"image_refs": ["base64_encoded_image1", "base64_encoded_image2", ...],
|
| 269 |
+
"width": 512,
|
| 270 |
+
"height": 512,
|
| 271 |
+
"guidance": 4.0,
|
| 272 |
+
"num_steps": 25,
|
| 273 |
+
"seed": -1
|
| 274 |
+
}
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
**Response:**
|
| 278 |
+
```json
|
| 279 |
+
{
|
| 280 |
+
"image": "base64_encoded_generated_image"
|
| 281 |
+
}
|
| 282 |
+
```
|
| 283 |
+
|
| 284 |
+
**Example JavaScript Usage:**
|
| 285 |
+
```javascript
|
| 286 |
+
async function generateImage() {
|
| 287 |
+
const response = await fetch('/api/generate', {
|
| 288 |
+
method: 'POST',
|
| 289 |
+
headers: {
|
| 290 |
+
'Content-Type': 'application/json',
|
| 291 |
+
},
|
| 292 |
+
body: JSON.stringify({
|
| 293 |
+
prompt: "handsome woman in the city",
|
| 294 |
+
image_refs: [],
|
| 295 |
+
width: 512,
|
| 296 |
+
height: 512
|
| 297 |
+
}),
|
| 298 |
+
});
|
| 299 |
+
|
| 300 |
+
const data = await response.json();
|
| 301 |
+
const imgElement = document.getElementById('generatedImage');
|
| 302 |
+
imgElement.src = `data:image/png;base64,${data.image}`;
|
| 303 |
+
}
|
| 304 |
+
```
|
| 305 |
+
""")
|
| 306 |
+
|
| 307 |
return demo
|
| 308 |
|
| 309 |
+
# 创建API端点
|
| 310 |
+
@app.post("/api/generate")
|
| 311 |
+
async def generate_image(
|
| 312 |
+
prompt: str = Body(...),
|
| 313 |
+
width: int = Body(512),
|
| 314 |
+
height: int = Body(512),
|
| 315 |
+
guidance: float = Body(4.0),
|
| 316 |
+
num_steps: int = Body(25),
|
| 317 |
+
seed: int = Body(-1),
|
| 318 |
+
image_refs: list = Body([])
|
| 319 |
+
):
|
| 320 |
+
global pipeline
|
| 321 |
+
# 处理参考图像
|
| 322 |
+
ref_images = []
|
| 323 |
+
for i in range(min(4, len(image_refs))):
|
| 324 |
+
if image_refs[i]:
|
| 325 |
+
try:
|
| 326 |
+
# 解码base64图像
|
| 327 |
+
if isinstance(image_refs[i], str) and "base64" in image_refs[i]:
|
| 328 |
+
# 移除数据URL前缀
|
| 329 |
+
if "," in image_refs[i]:
|
| 330 |
+
img_data = image_refs[i].split(",")[1]
|
| 331 |
+
else:
|
| 332 |
+
img_data = image_refs[i]
|
| 333 |
+
|
| 334 |
+
img_data = base64.b64decode(img_data)
|
| 335 |
+
ref_img = PILImage.open(io.BytesIO(img_data))
|
| 336 |
+
ref_images.append(ref_img)
|
| 337 |
+
else:
|
| 338 |
+
ref_images.append(None)
|
| 339 |
+
except:
|
| 340 |
+
ref_images.append(None)
|
| 341 |
+
else:
|
| 342 |
+
ref_images.append(None)
|
| 343 |
+
|
| 344 |
+
# 填充至4张图像
|
| 345 |
+
while len(ref_images) < 4:
|
| 346 |
+
ref_images.append(None)
|
| 347 |
+
|
| 348 |
+
# 调用模型生成图像
|
| 349 |
+
result_image, _ = pipeline.gradio_generate(
|
| 350 |
+
prompt, width, height, guidance, num_steps, seed,
|
| 351 |
+
ref_images[0], ref_images[1], ref_images[2], ref_images[3]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# 将结果图像编码为base64
|
| 355 |
+
buffered = io.BytesIO()
|
| 356 |
+
result_image.save(buffered, format="PNG")
|
| 357 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 358 |
+
|
| 359 |
+
return {"image": img_str}
|
| 360 |
+
|
| 361 |
if __name__ == "__main__":
|
| 362 |
from typing import Literal
|
| 363 |
+
import uvicorn
|
| 364 |
from transformers import HfArgumentParser
|
| 365 |
|
| 366 |
@dataclasses.dataclass
|
|
|
|
| 372 |
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
|
| 373 |
)
|
| 374 |
port: int = 7860
|
| 375 |
+
host: str = "0.0.0.0"
|
| 376 |
|
| 377 |
parser = HfArgumentParser([AppArgs])
|
| 378 |
+
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
|
| 379 |
args = args_tuple[0]
|
| 380 |
+
|
| 381 |
+
# 创建Gradio demo
|
| 382 |
demo = create_demo(args.name, args.device, args.offload)
|
| 383 |
+
|
| 384 |
+
# 挂载Gradio接口到FastAPI应用
|
| 385 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 386 |
+
|
| 387 |
+
# 使用uvicorn启动FastAPI应用
|
| 388 |
+
uvicorn.run(app, host=args.host, port=args.port)
|