Spaces:
Running
Running
File size: 28,500 Bytes
8ea2821 440bfdf 3caf059 440bfdf ac4d567 da52f70 440bfdf f2cc599 da52f70 440bfdf da52f70 440bfdf 6e65edc 0e950fb 6e65edc ac4d567 da52f70 440bfdf ac4d567 3fec146 ac4d567 3fec146 440bfdf ac4d567 440bfdf ac4d567 440bfdf b6cd751 440bfdf 3caf059 440bfdf 8ea2821 440bfdf b6cd751 440bfdf b6cd751 440bfdf b6cd751 440bfdf f2cc599 440bfdf 8ea2821 440bfdf 8ea2821 626abc7 8ea2821 440bfdf b6cd751 9443444 b6cd751 440bfdf b6cd751 440bfdf b6cd751 9443444 440bfdf 9443444 440bfdf ac4d567 0e950fb 440bfdf da52f70 440bfdf da52f70 440bfdf 3caf059 440bfdf da52f70 440bfdf ac4d567 440bfdf 3caf059 440bfdf 3caf059 440bfdf b6cd751 8ea2821 b6cd751 440bfdf 8ea2821 440bfdf 3caf059 440bfdf 8ea2821 440bfdf f2cc599 f59d741 f2cc599 440bfdf 3caf059 440bfdf 3caf059 440bfdf 604ca3c 440bfdf da52f70 440bfdf 8ea2821 604ca3c 8ea2821 440bfdf 3caf059 440bfdf b6cd751 8ea2821 b6cd751 9443444 b6cd751 440bfdf 3caf059 440bfdf 9443444 440bfdf 9443444 440bfdf 8ea2821 440bfdf 8ea2821 440bfdf 3caf059 9443444 8ea2821 9443444 8ea2821 440bfdf 3caf059 9443444 f2cc599 440bfdf 3caf059 440bfdf 9443444 440bfdf 5ceabec 440bfdf 9443444 440bfdf da52f70 440bfdf 8ea2821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
# install.packages("~/Documents/fastrerandomize-software/fastrerandomize",repos = NULL, type = "source",force = F)
# ============================================================
# app.R | Shiny App for Rerandomization with fastrerandomize
# ============================================================
# 1) The user can upload or simulate a covariate dataset (X).
# 2) They specify rerandomization parameters: n_treated, acceptance prob, etc.
# 3) The app generates a set of accepted randomizations under rerandomization.
# 4) The user can optionally upload or simulate outcomes (Y) and run a randomization test.
# 5) The app displays distribution of the balance measure (e.g., Hotelling's T^2)
# and final p-value/fiducial interval, along with run-time comparisons between
# fastrerandomize and base R methods.
#
# ----------------------------
# Load required packages
# ----------------------------
options(error=NULL)
library(shiny)
library(shinydashboard)
library(DT) # For data tables
library(ggplot2) # For basic plotting
library(fastrerandomize) # Our rerandomization package
library(parallel) # For detecting CPU cores
# For production apps, ensure fastrerandomize is installed:
# install.packages("devtools")
# devtools::install_github("cjerzak/fastrerandomize-software/fastrerandomize")
# ---------------------------------------------------------
# UI Section
# ---------------------------------------------------------
ui <- dashboardPage(
# ========== Header =================
dashboardHeader(
title = span(
style = "font-weight: 600; font-size: 14px;",
a(
href = "https://fastrerandomize.github.io/",
"fastrerandomize.github.io",
target = "_blank",
style = "color: white; text-decoration: underline; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;"
)
)
),
# ========== Sidebar ================
dashboardSidebar(
sidebarMenu(
menuItem("1. Data & Covariates", tabName = "datatab", icon = icon("database")),
menuItem("2. Generate Randomizations", tabName = "gennet", icon = icon("random")),
menuItem("3. Randomization Test", tabName = "randtest", icon = icon("flask")),
# ---- Here is the minimal "Share" button HTML + JS inlined in Shiny ----
# We wrap it in tags$div(...) and tags$script(HTML(...)) so it is recognized
# by Shiny. You can adjust the styling or placement as needed.
tags$div(
style = "text-align: left; margin: 1em 0 1em 1em;",
HTML('
<button id="share-button"
style="
display: inline-flex;
align-items: center;
justify-content: center;
gap: 8px;
padding: 5px 10px;
font-size: 16px;
font-weight: normal;
color: #000;
background-color: #fff;
border: 1px solid #ddd;
border-radius: 6px;
cursor: pointer;
box-shadow: 0 1.5px 0 #000;
">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor"
stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<circle cx="18" cy="5" r="3"></circle>
<circle cx="6" cy="12" r="3"></circle>
<circle cx="18" cy="19" r="3"></circle>
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
</svg>
<strong>Share</strong>
</button>
'),
# Insert the JS as well
tags$script(
HTML("
(function() {
const shareBtn = document.getElementById('share-button');
// Reusable helper function to show a small “Copied!” message
function showCopyNotification() {
const notification = document.createElement('div');
notification.innerText = 'Copied to clipboard';
notification.style.position = 'fixed';
notification.style.bottom = '20px';
notification.style.right = '20px';
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)';
notification.style.color = '#fff';
notification.style.padding = '8px 12px';
notification.style.borderRadius = '4px';
notification.style.zIndex = '9999';
document.body.appendChild(notification);
setTimeout(() => { notification.remove(); }, 2000);
}
shareBtn.addEventListener('click', function() {
const currentURL = window.location.href;
const pageTitle = document.title || 'Check this out!';
// If browser supports Web Share API
if (navigator.share) {
navigator.share({
title: pageTitle,
text: '',
url: currentURL
})
.catch((error) => {
console.log('Sharing failed', error);
});
} else {
// Fallback: Copy URL
if (navigator.clipboard && navigator.clipboard.writeText) {
navigator.clipboard.writeText(currentURL).then(() => {
showCopyNotification();
}, (err) => {
console.error('Could not copy text: ', err);
});
} else {
// Double fallback for older browsers
const textArea = document.createElement('textarea');
textArea.value = currentURL;
document.body.appendChild(textArea);
textArea.select();
try {
document.execCommand('copy');
showCopyNotification();
} catch (err) {
alert('Please copy this link:\\n' + currentURL);
}
document.body.removeChild(textArea);
}
}
});
})();
")
)
),
# ---- End: Minimal Share button snippet ----
tags$div(
style = "text-align: left; margin: 4em 0 1em 1em;",
HTML("
<p style='font-size:12px;'>
Citation: </p>
<p>
<strong>fastrerandomize (2025). </strong><br/>
<a href='https://arxiv.org/pdf/2501.07642' target='_blank'>PDF</a> |
<a href='https://connorjerzak.com/wp-content/uploads/2025/01/FastReandomizeBib.txt' target='_blank'>BibTeX</a>
</p>
"
)
)
)
),
# ========== Body ===================
dashboardBody(
# A little CSS to keep the design timeless and clean
tags$head(
tags$style(HTML("
.smalltext { font-size: 90%; color: #555; }
.shiny-output-error { color: red; }
.shiny-input-container { margin-bottom: 15px; }
"))
),
tabItems(
# ------------------------------------------------
# 1) Data & Covariates Tab
# ------------------------------------------------
tabItem(
tabName = "datatab",
fluidRow(
box(width = 5, title = "Covariate Data: Upload or Simulate",
status = "primary", solidHeader = TRUE,
radioButtons("data_source", "Data Source:",
choices = c("Upload CSV" = "upload",
"Simulate data" = "simulate"),
selected = "simulate"),
conditionalPanel(
condition = "input.data_source == 'upload'",
fileInput("file_covariates", "Choose CSV File",
accept = c(".csv")),
helpText("Columns = features/covariates, rows = units.")
),
conditionalPanel(
condition = "input.data_source == 'simulate'",
numericInput("sim_n", "Number of units (rows)",
value = 64, min = 10),
numericInput("sim_p", "Number of covariates (columns)",
value = 32, min = 2),
actionButton("simulate_btn", "Simulate X")
)
),
box(width = 7, title = "Preview of Covariates (X)",
status = "info", solidHeader = TRUE,
DTOutput("covariates_table"))
)
),
# ------------------------------------------------
# 2) Generate Randomizations Tab
# ------------------------------------------------
tabItem(
tabName = "gennet",
fluidRow(
box(width = 4, title = "Rerandomization Parameters",
status = "primary", solidHeader = TRUE,
numericInput("n_treated", "Number Treated (n_treated)",
value = 10, min = 1),
selectInput("random_type", "Randomization Type:",
choices = c("Monte Carlo" = "monte_carlo",
"Exact" = "exact"),
selected = "monte_carlo"),
numericInput("accept_prob", "Acceptance Probability (stringency)",
value = 0.01, min = 0.0001, max = 1),
conditionalPanel(
condition = "input.random_type == 'monte_carlo'",
numericInput("max_draws", "Max Draws (MC)", value = 1e5, min = 1e3),
numericInput("batch_size", "Batch Size (MC)", value = 1e3, min = 1e2)
),
actionButton("generate_btn", "Generate")
),
box(width = 8, title = "Summary of Accepted Randomizations",
status = "info", solidHeader = TRUE,
# First row of boxes: accepted randomizations and min balance measure
fluidRow(
column(width = 6, valueBoxOutput("n_accepted_box", width = 12)),
column(width = 6, valueBoxOutput("balance_min_box", width = 12))
),
# Second row of boxes: fastrerandomize time & base R time
fluidRow(
column(width = 6, valueBoxOutput("fastrerand_time_box", width = 12)),
column(width = 6, valueBoxOutput("baseR_time_box", width = 12))
),
br(),
plotOutput("balance_hist", height = "250px"),
# Hardware info note
br(),
uiOutput("hardware_info")
)
)
),
# ------------------------------------------------
# 3) Randomization Test Tab
# ------------------------------------------------
tabItem(
tabName = "randtest",
fluidRow(
box(
width = 4, title = "Randomization Test Setup",
status = "primary", solidHeader = TRUE,
# (Existing UI elements for Y already in your code)
radioButtons("outcome_source", "Outcome Data (Y):",
choices = c("Simulate Y" = "simulate",
"Upload CSV" = "uploadY"),
selected = "simulate"),
conditionalPanel(
condition = "input.outcome_source == 'simulate'",
numericInput("true_tau", "True Effect (simulate)", 1, step = 0.5),
numericInput("noise_sd", "Noise SD for Y", 0.5, step = 0.1),
actionButton("simulateY_btn", "Simulate Y")
),
conditionalPanel(
condition = "input.outcome_source == 'uploadY'",
fileInput("file_outcomes", "Choose CSV File with outcome vector Y",
accept = c(".csv")),
helpText("Single column with length = #units.")
),
br(),
actionButton("run_randtest_btn", "Run Test"),
checkboxInput("findFI", "Compute Fiducial Interval?", value = TRUE)
),
box(
width = 6, title = "Preview of Outcomes (Y)",
status = "info", solidHeader = TRUE,
DTOutput("outcomes_table")
)
),
fluidRow(
box(
width = 4, title = NULL, status = NULL,
background = NULL, solidHeader = FALSE, collapsible = FALSE,
tags$p("Note: Relative speedups greatest for large number of accepted randomizations.",
style = "color:#555; font-size:90%; margin:0;")
),
box(width = 8, title = "Test Results", status = "info", solidHeader = TRUE,
# First row: p-value and observed effect (fastrerandomize)
fluidRow(
column(width = 6, valueBoxOutput("pvalue_box", width = 12)),
column(width = 6, valueBoxOutput("tauobs_box", width = 12))
),
# Second row: fastrerandomize test time & base R test time
fluidRow(
column(width = 6, valueBoxOutput("fastrerand_test_time_box", width = 12)),
column(width = 6, valueBoxOutput("baseR_test_time_box", width = 12))
),
# Show fastrerandomize FI
uiOutput("fi_text"),
# Now show Base R results in a separate row
tags$hr(),
fluidRow(
column(width = 6, valueBoxOutput("pvalue_box_baseR", width = 12)),
column(width = 6, valueBoxOutput("tauobs_box_baseR", width = 12))
),
fluidRow(
column(width = 12, uiOutput("fi_text_baseR"))
),
br(),
plotOutput("test_plot", height = "280px")
)
)
)
) # end tabItems
) # end dashboardBody
) # end dashboardPage
# ---------------------------------------------------------
# SERVER
# ---------------------------------------------------------
server <- function(input, output, session) {
# -------------------------------------------------------
# 1. Covariate Data Handling
# -------------------------------------------------------
# We store the covariate matrix X in a reactiveVal for convenient reuse
X_data <- reactiveVal(NULL)
# Observe file input or simulation for X
observeEvent(input$file_covariates, {
req(input$file_covariates)
inFile <- input$file_covariates
df <- tryCatch(read.csv(inFile$datapath, header = TRUE),
error = function(e) NULL)
if (!is.null(df)) {
X_data(as.matrix(df))
}
})
# If the user clicks "Simulate X"
observeEvent(input$simulate_btn, {
n <- input$sim_n
p <- input$sim_p
# Basic simulation of N(0,1) data
simX <- matrix(rnorm(n * p), nrow = n, ncol = p)
X_data(simX)
})
# Show X in table
output$covariates_table <- renderDT({
req(X_data())
# Round all numeric columns to 3 significant digits
df <- as.data.frame(X_data())
numeric_cols <- sapply(df, is.numeric)
df[numeric_cols] <- lapply(df[numeric_cols], signif, digits = 3)
datatable(df, options = list(scrollX = TRUE, pageLength = 10))
})
# -------------------------------------------------------
# 2. Generate Rerandomizations
# -------------------------------------------------------
# We'll keep the accepted randomizations from fastrerandomize in RerandResult
# and from base R in RerandResult_base.
RerandResult <- reactiveVal(NULL)
RerandResult_base <- reactiveVal(NULL)
# We also store their run times
fastrand_time <- reactiveVal(NULL)
baseR_time <- reactiveVal(NULL)
observeEvent(input$generate_btn, {
req(X_data())
validate(
need(nrow(X_data()) >= input$n_treated,
"Number treated cannot exceed total units.")
)
withProgress(message = "Computing results...", value = 0, {
# =========== 1) fastrerandomize generation timing ===========
t0_fast <- Sys.time()
out <- tryCatch({
generate_randomizations(
n_units = nrow(X_data()),
n_treated = input$n_treated,
X = X_data(),
randomization_accept_prob= input$accept_prob,
randomization_type = input$random_type,
max_draws = if (input$random_type == "monte_carlo") input$max_draws else NULL,
batch_size = if (input$random_type == "monte_carlo") input$batch_size else NULL,
verbose = FALSE
)
}, error = function(e) e)
t1_fast <- Sys.time()
if (inherits(out, "error")) {
showNotification(paste("Error generating randomizations (fastrerandomize):", out$message), type = "error")
RerandResult(NULL)
} else {
RerandResult(out)
}
fastrand_time(difftime(t1_fast, t0_fast, units = "secs"))
# =========== 2) base R generation timing ===========
t0_base <- Sys.time()
out_base <- tryCatch({
generate_randomizations_R(
n_units = nrow(X_data()),
n_treated = input$n_treated,
X = X_data(),
accept_prob= input$accept_prob,
random_type= input$random_type,
max_draws = if (input$random_type == "monte_carlo") input$max_draws else NULL,
batch_size = if (input$random_type == "monte_carlo") input$batch_size else NULL
)
}, error = function(e) e)
t1_base <- Sys.time()
if (inherits(out_base, "error")) {
showNotification(paste("Error generating randomizations (base R):", out_base$message), type = "error")
RerandResult_base(NULL)
} else {
RerandResult_base(out_base)
}
baseR_time(difftime(t1_base, t0_base, units = "secs"))
})
})
# Summaries of accepted randomizations
output$n_accepted_box <- renderValueBox({
rr <- RerandResult()
if (is.null(rr) || is.null(rr$randomizations)) {
valueBox("0", "Accepted Randomizations", icon = icon("ban"), color = "red")
} else {
nAcc <- nrow(rr$randomizations)
valueBox(nAcc, "Accepted Randomizations", icon = icon("check"), color = "green")
}
})
output$balance_min_box <- renderValueBox({
rr <- RerandResult()
if (is.null(rr) || is.null(rr$balance)) {
valueBox("---", "Min Balance Measure", icon = icon("question"), color = "orange")
} else {
minBal <- round(min(rr$balance), 3)
valueBox(minBal, "Min Balance Measure", icon = icon("thumbs-up"), color = "blue")
}
})
# Timings for generation: fastrerandomize and base R
output$fastrerand_time_box <- renderValueBox({
tm <- fastrand_time()
if (is.null(tm)) {
valueBox("---", "fastrerandomize generation time (secs)", icon = icon("clock"), color = "teal")
} else {
valueBox(round(as.numeric(tm), 3), "fastrerandomize generation time (secs)",
icon = icon("clock"), color = "teal")
}
})
output$baseR_time_box <- renderValueBox({
tm <- baseR_time()
if (is.null(tm)) {
valueBox("---", "base R generation time (secs)", icon = icon("clock"), color = "lime")
} else {
valueBox(round(as.numeric(tm), 3), "base R generation time (secs)",
icon = icon("clock"), color = "lime")
}
})
# Plot histogram of the balance measure (fastrerandomize result)
output$balance_hist <- renderPlot({
rr <- RerandResult()
req(rr, rr$balance)
df <- data.frame(balance = rr$balance)
ggplot(df, aes(x = balance)) +
geom_histogram(binwidth = diff(range(df$balance))/30, fill = "darkblue", alpha = 0.7) +
labs(title = "Distribution of Balance Statistic",
subtitle = "Among Accepted Randomizations",
x = "Balance (i.e., T^2)",
y = "Frequency") +
theme_minimal(base_size = 14)
})
# Hardware info (CPU cores, GPU note)
output$hardware_info <- renderUI({
num_cores <- detectCores(logical = TRUE)
HTML(paste(
"<strong>System Hardware Info:</strong><br/>",
"Number of CPU cores detected:", num_cores, "<br/>",
"With additional CPU or GPU, greater speedups can be expected.<br/>",
"Note: Speedups greatest in high-dimensional or large-N settings.<br/>"
))
})
# -------------------------------------------------------
# 3. Randomization Test
# -------------------------------------------------------
Y_data <- reactiveVal(NULL)
# (A) If user simulates Y
observeEvent(input$simulateY_btn, {
req(RerandResult())
rr <- RerandResult()
if (is.null(rr$randomizations) || nrow(rr$randomizations) < 1) {
showNotification("No accepted randomizations found. Cannot simulate Y for the 'observed' assignment.", type = "error")
return(NULL)
}
obsW <- rr$randomizations[1, ]
nunits <- length(obsW)
# Basic data generation: Y = X * beta + tau * W + noise
Xval <- X_data()
if (is.null(Xval)) {
showNotification("No covariate data found to help simulate outcomes. Using intercept-only model.", type="warning")
Xval <- matrix(0, nrow = nunits, ncol = 1)
}
# random coefficients
beta <- rnorm(ncol(Xval), 0, 1)
linear_part <- Xval %*% beta
Ysim <- as.numeric(linear_part +
obsW * input$true_tau +
rnorm(nunits, 0, input$noise_sd))
Y_data(Ysim)
})
# (B) If user uploads Y
observeEvent(input$file_outcomes, {
req(input$file_outcomes)
inFile <- input$file_outcomes
dfy <- tryCatch(read.csv(inFile$datapath, header = FALSE), error=function(e) NULL)
if (!is.null(dfy)) {
if (ncol(dfy) > 1) {
showNotification("Please provide a single-column CSV for Y.", type="error")
} else {
Y_data(as.numeric(dfy[[1]]))
}
}
})
# Render a preview of Y
output$outcomes_table <- renderDT({
req(Y_data()) # Make sure Y_data is not NULL
# Convert to data frame for DT
dfy <- data.frame(obsW = RerandResult()$randomizations[1, ],
Y = Y_data())
# Optionally round numeric data
dfy[] <- lapply(dfy, function(col) {
if (is.numeric(col)) signif(col, 3) else col
})
datatable(
dfy,
options = list(scrollX = TRUE, pageLength = 5)
)
})
# The randomization test result:
RandTestResult <- reactiveVal(NULL)
RandTestResult_base <- reactiveVal(NULL)
# We'll store their times:
fastrand_test_time <- reactiveVal(NULL)
baseR_test_time <- reactiveVal(NULL)
observeEvent(input$run_randtest_btn, {
withProgress(message = "Computing results...", value = 0, {
req(RerandResult())
rr <- RerandResult()
req(rr$randomizations)
if (is.null(Y_data())) {
showNotification("No outcome data Y found. Upload or simulate first.", type="error")
return(NULL)
}
obsW <- rr$randomizations[1, ]
obsY <- Y_data()
# =========== 1) fastrerandomize randomization_test timing ===========
t0_testfast <- Sys.time()
outTest <- tryCatch({
randomization_test(
obsW = obsW,
obsY = obsY,
candidate_randomizations = rr$randomizations,
findFI = input$findFI
)
}, error=function(e) e)
t1_testfast <- Sys.time()
if (inherits(outTest, "error")) {
showNotification(paste("Error in randomization_test (fastrerandomize):", outTest$message), type="error")
RandTestResult(NULL)
} else {
RandTestResult(outTest)
}
fastrand_test_time(difftime(t1_testfast, t0_testfast, units = "secs"))
# =========== 2) base R randomization test timing ===========
req(RerandResult_base())
rr_base <- RerandResult_base()
if (is.null(rr_base$randomizations) || nrow(rr_base$randomizations) < 1) {
showNotification("No base R randomizations found. Cannot run base R test.", type = "error")
RandTestResult_base(NULL)
return(NULL)
}
t0_testbase <- Sys.time()
outTestBase <- tryCatch({
randomization_test_R(
obsW = obsW,
obsY = obsY,
allW = rr_base$randomizations,
findFI = input$findFI # if user wants the FI, do so
)
}, error = function(e) e)
t1_testbase <- Sys.time()
if (inherits(outTestBase, "error")) {
showNotification(paste("Error in randomization_test (base R):", outTestBase$message), type="error")
RandTestResult_base(NULL)
} else {
RandTestResult_base(outTestBase)
}
baseR_test_time(difftime(t1_testbase, t0_testbase, units = "secs"))
})
})
# Display p-value and observed tau (from the fastrerandomize test)
output$pvalue_box <- renderValueBox({
rt <- RandTestResult()
if (is.null(rt)) {
valueBox("---", "p-value (fastrerandomize)", icon = icon("question"), color = "blue")
} else {
valueBox(round(rt$p_value, 4), "p-value (fastrerandomize)", icon = icon("list-check"), color = "purple")
}
})
output$tauobs_box <- renderValueBox({
rt <- RandTestResult()
if (is.null(rt)) {
valueBox("---", "Observed Effect", icon = icon("question"), color = "maroon")
} else {
valueBox(round(rt$tau_obs, 4), "Observed Effect", icon = icon("bullseye"), color = "maroon")
}
})
# Times for randomization test
output$fastrerand_test_time_box <- renderValueBox({
tm <- fastrand_test_time()
if (is.null(tm)) {
valueBox("---", "fastrerandomize test time (secs)", icon = icon("clock"), color = "teal")
} else {
valueBox(round(as.numeric(tm), 3), "fastrerandomize test time (secs)",
icon = icon("clock"), color = "teal")
}
})
output$baseR_test_time_box <- renderValueBox({
tm <- baseR_test_time()
if (is.null(tm)) {
valueBox("---", "base R test time (secs)", icon = icon("clock"), color = "lime")
} else {
valueBox(round(as.numeric(tm), 3), "base R test time (secs)",
icon = icon("clock"), color = "lime")
}
})
# If we have a fiducial interval from fastrerandomize, display it
#output$fi_text <- renderUI({
# rt <- RandTestResult()
# if (is.null(rt) || is.null(rt$FI)) {
# return(NULL)
# }
# fi_lower <- round(rt$FI[1], 4)
# fi_upper <- round(rt$FI[2], 4)
#})
# If we have a fiducial interval from base R, display it
output$fi_text_baseR <- renderUI({
rt <- RandTestResult_base()
if (is.null(rt) || is.null(rt$FI)) {
return(NULL)
}
fi_lower <- round(rt$FI[1], 4)
fi_upper <- round(rt$FI[2], 4)
tagList(
strong("Fiducial Interval (95%):"),
p(sprintf("[%.4f, %.4f]", fi_lower, fi_upper))
)
})
# A simple plot for the randomization distribution (for demonstration).
# In this app, we do not store the entire distribution from either method,
# so we simply show the observed effect as a point.
output$test_plot <- renderPlot({
rt <- RandTestResult()
if (is.null(rt)) {
plot.new()
title("No test results yet.")
return(NULL)
}
# Just display the observed effect from fastrerandomize
obs_val <- rt$tau_obs
ggplot(data.frame(x = obs_val, y = 0), aes(x, y)) +
geom_point(size=4, color="red") +
xlim(c(obs_val - abs(obs_val)*2 - 1, obs_val + abs(obs_val)*2 + 1)) +
labs(title = "Observed Treatment Effect (fastrerandomize)",
x = "Effect Size", y = "") +
theme_minimal(base_size = 14) +
geom_vline(xintercept = 0, linetype="dashed", color="gray40")
})
}
# ---------------------------------------------------------
# Run the Application
# ---------------------------------------------------------
shinyApp(ui = ui, server = server)
|