Spaces:
Running
on
Zero
Running
on
Zero
update text labels usage
Browse files
app.py
CHANGED
|
@@ -20,9 +20,6 @@ def extract_model_short_name(model_id: str) -> str:
|
|
| 20 |
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
-
# (Optional) modest speed-ups
|
| 24 |
-
torch.set_grad_enabled(False)
|
| 25 |
-
|
| 26 |
# Model bundles for cleaner wiring
|
| 27 |
@dataclass
|
| 28 |
class ZSDetBundle:
|
|
@@ -30,7 +27,6 @@ class ZSDetBundle:
|
|
| 30 |
model_name: str
|
| 31 |
processor: AutoProcessor
|
| 32 |
model: AutoModelForZeroShotObjectDetection
|
| 33 |
-
use_label_ids: bool # True for OWLv2/OMDet (labels are indices), False for others
|
| 34 |
|
| 35 |
# LLMDet
|
| 36 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
|
@@ -41,7 +37,6 @@ bundle_llmdet = ZSDetBundle(
|
|
| 41 |
model_name=extract_model_short_name(model_llmdet_id),
|
| 42 |
processor=processor_llmdet,
|
| 43 |
model=model_llmdet,
|
| 44 |
-
use_label_ids=False,
|
| 45 |
)
|
| 46 |
|
| 47 |
# MM GroundingDINO
|
|
@@ -53,7 +48,6 @@ bundle_mm_grounding = ZSDetBundle(
|
|
| 53 |
model_name=extract_model_short_name(model_mm_grounding_id),
|
| 54 |
processor=processor_mm_grounding,
|
| 55 |
model=model_mm_grounding,
|
| 56 |
-
use_label_ids=False,
|
| 57 |
)
|
| 58 |
|
| 59 |
# OMDet Turbo
|
|
@@ -65,7 +59,6 @@ bundle_omdet = ZSDetBundle(
|
|
| 65 |
model_name=extract_model_short_name(model_omdet_id),
|
| 66 |
processor=processor_omdet,
|
| 67 |
model=model_omdet,
|
| 68 |
-
use_label_ids=True, # returns label indices
|
| 69 |
)
|
| 70 |
|
| 71 |
# OWLv2
|
|
@@ -77,7 +70,6 @@ bundle_owlv2 = ZSDetBundle(
|
|
| 77 |
model_name=extract_model_short_name(model_owlv2_id),
|
| 78 |
processor=processor_owlv2,
|
| 79 |
model=model_owlv2,
|
| 80 |
-
use_label_ids=True, # returns label indices
|
| 81 |
)
|
| 82 |
|
| 83 |
# ---------------------------
|
|
@@ -106,27 +98,15 @@ def detect(
|
|
| 106 |
outputs = model(**inputs)
|
| 107 |
|
| 108 |
results = bundle.processor.post_process_grounded_object_detection(
|
| 109 |
-
outputs, threshold=threshold, target_sizes=[image.size[::-1]]
|
| 110 |
)[0]
|
| 111 |
|
| 112 |
annotations = []
|
| 113 |
-
key = "labels" if bundle.use_label_ids else "text_labels"
|
| 114 |
|
| 115 |
-
for box, score,
|
| 116 |
if float(score) < threshold:
|
| 117 |
continue
|
| 118 |
|
| 119 |
-
if bundle.use_label_ids:
|
| 120 |
-
# Map label index -> prompt string
|
| 121 |
-
label_idx = int(label) if isinstance(label, torch.Tensor) else int(label)
|
| 122 |
-
if 0 <= label_idx < len(prompts):
|
| 123 |
-
label_name = prompts[label_idx]
|
| 124 |
-
else:
|
| 125 |
-
label_name = str(label_idx)
|
| 126 |
-
else:
|
| 127 |
-
# Direct text label
|
| 128 |
-
label_name = label if isinstance(label, str) else str(label)
|
| 129 |
-
|
| 130 |
xmin, ymin, xmax, ymax = map(lambda v: int(v), box.tolist())
|
| 131 |
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {float(score):.2f}"))
|
| 132 |
|
|
|
|
| 20 |
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
# Model bundles for cleaner wiring
|
| 24 |
@dataclass
|
| 25 |
class ZSDetBundle:
|
|
|
|
| 27 |
model_name: str
|
| 28 |
processor: AutoProcessor
|
| 29 |
model: AutoModelForZeroShotObjectDetection
|
|
|
|
| 30 |
|
| 31 |
# LLMDet
|
| 32 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
|
|
|
| 37 |
model_name=extract_model_short_name(model_llmdet_id),
|
| 38 |
processor=processor_llmdet,
|
| 39 |
model=model_llmdet,
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
# MM GroundingDINO
|
|
|
|
| 48 |
model_name=extract_model_short_name(model_mm_grounding_id),
|
| 49 |
processor=processor_mm_grounding,
|
| 50 |
model=model_mm_grounding,
|
|
|
|
| 51 |
)
|
| 52 |
|
| 53 |
# OMDet Turbo
|
|
|
|
| 59 |
model_name=extract_model_short_name(model_omdet_id),
|
| 60 |
processor=processor_omdet,
|
| 61 |
model=model_omdet,
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
# OWLv2
|
|
|
|
| 70 |
model_name=extract_model_short_name(model_owlv2_id),
|
| 71 |
processor=processor_owlv2,
|
| 72 |
model=model_owlv2,
|
|
|
|
| 73 |
)
|
| 74 |
|
| 75 |
# ---------------------------
|
|
|
|
| 98 |
outputs = model(**inputs)
|
| 99 |
|
| 100 |
results = bundle.processor.post_process_grounded_object_detection(
|
| 101 |
+
outputs, threshold=threshold, target_sizes=[image.size[::-1]], text_labels=texts,
|
| 102 |
)[0]
|
| 103 |
|
| 104 |
annotations = []
|
|
|
|
| 105 |
|
| 106 |
+
for box, score, label_name in zip(results["boxes"], results["scores"], results["text_labels"]):
|
| 107 |
if float(score) < threshold:
|
| 108 |
continue
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
xmin, ymin, xmax, ymax = map(lambda v: int(v), box.tolist())
|
| 111 |
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {float(score):.2f}"))
|
| 112 |
|