# 1.Data setting data_txt_root: '/dataset/example/train_data_info.txt' # data csv_filepath resolution: 1024 aspect_ratio_type: 'mar_1024' # data bucketing strategy, mar_256、mar_512、mar_1024 null_text_ratio: 0.1 dataloader_num_workers: 8 train_batch_size: 4 repeats: 1 prompt_template_encode_prefix: "<|im_start|>system\nAs an image editing expert, first analyze the content and attributes of the input image(s). Then, based on the user's editing instructions, clearly and precisely determine how to modify the given image(s), ensuring that only the specified parts are altered and all other aspects remain consistent with the original(s).<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" prompt_template_encode_suffix: '<|im_end|>\n<|im_start|>assistant\n' prompt_template_encode_start_idx: 67 prompt_template_encode_end_idx: 5 # 2. Model setting text_tokenizer_max_length: 512 # tokenizer max len pretrained_model_name_or_path: "./weights/LongCat-Image-Edit" # root directory of the model,with vae、transformer、scheduler eta; diffusion_pretrain_weight: null # if a specified diffusion weight path is provided, load the model parameters from the current directory. use_dynamic_shifting: true # scheduler dynamic shifting resume_from_checkpoint: latest # - "latest" # Loads most recent step checkpoint # - "/path/to/checkpoint" # Resumes from specified directory # 3. Training setting use_ema: False ema_rate: 0.999 mixed_precision: 'bf16' max_train_steps: 100000 gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clip: 1.0 learning_rate: 1.0e-5 adam_weight_decay: 1.0e-2 adam_epsilon: 1.0e-8 adam_beta1: 0.9 adam_beta2: 0.999 lr_num_cycles: 1 lr_power: 1.0 lr_scheduler: 'constant' lr_warmup_steps: 1000 #4. Log setting log_interval: 20 save_model_steps: 1000 work_dir: 'output/edit_model' seed: 43