File size: 11,799 Bytes
5a9a546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

from fastapi import FastAPI, HTTPException, UploadFile, File
from pydantic import BaseModel
from typing import List, Optional
import os
from dotenv import load_dotenv
load_dotenv()

import hashlib
# [CHANGED] Import Supabase
from supabase import create_client, Client
from pymongo import MongoClient
from bson import ObjectId
import math

# helper to convert hex string to imagehash object
try:
    from imagehash import hex_to_hash
except Exception:
    def hex_to_hash(s):
        return None

from sentence_transformers import SentenceTransformer
from transformers import CLIPProcessor, CLIPModel
import torch
from PIL import Image
import io
import numpy as np
import imagehash
import cv2


# Load models
sbert = SentenceTransformer('all-MiniLM-L6-v2')
clip_model_name = 'openai/clip-vit-base-patch32'
clip_model = CLIPModel.from_pretrained(clip_model_name)
clip_processor = CLIPProcessor.from_pretrained(clip_model_name)

# [CHANGED] Setup Supabase
SUPABASE_URL = os.getenv('SUPABASE_URL')
# Use Service Role Key for backend access
SUPABASE_KEY = os.getenv('SUPABASE_SERVICE_ROLE_KEY') 
SUPABASE_BUCKET = os.getenv('SUPABASE_BUCKET', 'files')

if not SUPABASE_URL or not SUPABASE_KEY:
    print("Warning: SUPABASE_URL or SUPABASE_SERVICE_ROLE_KEY not set.")
    supabase = None
else:
    try:
        supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
        print(f"Supabase client initialized for bucket: {SUPABASE_BUCKET}")
    except Exception as e:
        print(f"Supabase init failed: {e}")
        supabase = None
# Mongo
mongo_client = MongoClient(os.getenv('MONGO_URI'))
try:
    db = mongo_client.get_default_database()
except Exception:
    db = mongo_client['ai_personal_cloud']

files_col = db['files']

app = FastAPI(title='AI Microservice')

class ProcessInput(BaseModel):
    fileId: str
    minioKey: str # Keeping this name to maintain compatibility with Node.js backend
    mimetype: Optional[str]

class QueryInput(BaseModel):
    query: str
    userId: Optional[str] = None

# utility

# [CHANGED] Download from Supabase Storage
def download_from_supabase(key):
    if not supabase:
        raise Exception("Supabase client not initialized")
    
    # storage.from_() is used because 'from' is a reserved keyword in Python
    # download() returns bytes directly
    data = supabase.storage.from_(SUPABASE_BUCKET).download(key)
    return data


def sha256_hash(buffer):
    h = hashlib.sha256()
    h.update(buffer)
    return h.hexdigest()


def phash_image(buffer):
    try:
        img = Image.open(io.BytesIO(buffer)).convert('RGB')
        ph = str(imagehash.phash(img))
        return ph
    except Exception as e:
        return None


def embedding_from_text_sbert(text):
    vec = sbert.encode(text)
    return vec.tolist()


def embedding_from_text_clip(text):
    inputs = clip_processor(text=[text], return_tensors='pt', padding=True, truncation=True)
    with torch.no_grad():
        features = clip_model.get_text_features(**inputs)
    features = features / features.norm(p=2, dim=-1, keepdim=True)
    return features[0].cpu().numpy().tolist()


def embedding_from_image_clip(buffer):
    img = Image.open(io.BytesIO(buffer)).convert('RGB')
    inputs = clip_processor(images=img, return_tensors='pt')
    with torch.no_grad():
        features = clip_model.get_image_features(**inputs)
    features = features / features.norm(p=2, dim=-1, keepdim=True)
    return features[0].cpu().numpy().tolist()


@app.post('/process-file')
async def process_file(payload: ProcessInput):
    import traceback # Ensure this is imported
    
    key = payload.minioKey
    file_id = payload.fileId
    mimetype = (payload.mimetype or '').lower()

    if not ObjectId.is_valid(file_id):
        raise HTTPException(status_code=400, detail=f"Invalid ObjectId: {file_id}")

    try:
        # [CHANGED] Safe Supabase Download
        try:
            buffer = download_from_supabase(key)
        except Exception as e:
            print(f"Supabase Error for key {key}: {e}")
            raise HTTPException(status_code=404, detail=f"Could not download file from Supabase: {str(e)}")

        # SHA256
        h = sha256_hash(buffer)
        
        # defaults
        embedding = []
        category = 'unknown'
        phash = None
        embedding_type = 'sbert'
        duplicate = False
        duplicate_of = None
        user_id = None

        # Fetch User from Mongo
        file_doc = files_col.find_one({'_id': ObjectId(file_id)})
        if file_doc:
            user_id = file_doc.get('userId')
        else:
            print(f"Warning: No document found in Mongo for ID {file_id}")

        # process images
        if 'image' in mimetype:
            ph = phash_image(buffer)
            phash = ph
            embedding = embedding_from_image_clip(buffer)
            category = 'image'
            embedding_type = 'clip_image'

            if h:
                existing = files_col.find_one({'hash': h, '_id': { '$ne': ObjectId(file_id) }})
                if existing:
                    duplicate = True
                    duplicate_of = str(existing['_id'])

            if not duplicate and phash:
                current_hash = hex_to_hash(phash)
                if current_hash: # Check if hash generation worked
                    query = { 'pHash': { '$exists': True } }
                    if user_id:
                        query['userId'] = user_id # MongoDB driver usually handles string vs ObjectId auto-conversion, but be careful here
                    
                    candidates = list(files_col.find(query))
                    for c in candidates:
                        try:
                            ch = hex_to_hash(c.get('pHash'))
                            if ch and (current_hash - ch <= 6):
                                duplicate = True
                                duplicate_of = str(c.get('_id'))
                                break
                        except Exception:
                            continue

        elif any(x in mimetype for x in ['pdf', 'text', 'msword', 'officedocument']):
            # For PDFs and Office docs, use filename for categorization
            filename = key.split('/')[-1].lower()
            
            # Try to extract text for embedding (only for plain text files)
            if 'text' in mimetype:
                try:
                    txt = buffer.decode('utf-8', errors='ignore')
                except Exception:
                    txt = filename
            else:
                # For PDFs/Office docs, use filename instead of binary content
                txt = filename.replace('_', ' ').replace('-', ' ')
            
            # Limit text length for SBERT to prevent crashes on massive files
            embedding = embedding_from_text_sbert(txt[:5000]) 
            
            # Categorize based on mimetype first, then filename
            if 'presentation' in mimetype or filename.endswith(('.ppt', '.pptx')):
                category = 'presentation'
            elif 'spreadsheet' in mimetype or filename.endswith(('.xls', '.xlsx', '.csv')):
                category = 'spreadsheet'
            elif 'pdf' in mimetype or filename.endswith('.pdf'):
                # Check filename for common document types
                if any(word in filename for word in ['invoice', 'bill', 'receipt']):
                    category = 'invoice'
                elif any(word in filename for word in ['resume', 'cv']):
                    category = 'resume'
                elif any(word in filename for word in ['report', 'analysis']):
                    category = 'report'
                else:
                    category = 'pdf'
            elif 'text' in mimetype:
                if any(word in txt.lower() for word in ['invoice', 'bill']):
                    category = 'invoice'
                elif any(word in txt.lower() for word in ['note', 'memo']):
                    category = 'notes'
                else:
                    category = 'text'
            else:
                category = 'document'
            
            if h:
                existing = files_col.find_one({'hash': h, '_id': { '$ne': ObjectId(file_id) }})
                if existing:
                    duplicate = True
                    duplicate_of = str(existing['_id'])

        else:
            # Fallback
            embedding = embedding_from_text_sbert(key.split('/')[-1].replace('_', ' '))
            category = 'file'
            
            if h:
                existing = files_col.find_one({'hash': h, '_id': { '$ne': ObjectId(file_id) }})
                if existing:
                    duplicate = True
                    duplicate_of = str(existing['_id'])

        # Save to Mongo
        update_data = {
            'category': category,
            'embedding': embedding,
            'embeddingType': embedding_type,
            'hash': h,
            'pHash': phash,
            'duplicate': duplicate,
            'duplicateOf': ObjectId(duplicate_of) if duplicate_of else None
        }
        
        files_col.update_one({'_id': ObjectId(file_id)}, {'$set': update_data})

        return { 
            'status': 'processed',
            'fileId': file_id,
            'category': category, 
            'duplicate': duplicate 
        }

    except HTTPException as he:
        raise he
    except Exception as e:
        traceback.print_exc() # <--- THIS IS KEY FOR DEBUGGING
        raise HTTPException(status_code=500, detail=f"Internal Error: {str(e)}")

@app.post('/semantic-search')
async def semantic_search(payload: QueryInput):
    q = payload.query
    userId = getattr(payload, 'userId', None)
    if not q:
        raise HTTPException(status_code=400, detail='Missing query')
    # compute both sbert and clip text embeddings
    sbert_emb = embedding_from_text_sbert(q)
    clip_text_emb = embedding_from_text_clip(q)

    # fetch files for userId if present otherwise all files
    query = {}
    if userId:
        try:
            query['userId'] = ObjectId(userId)
        except Exception:
            query['userId'] = userId
    files = list(files_col.find(query, { 'filename': 1, 'category': 1, 'embedding': 1, 'embeddingType': 1 }))

    def cosine(a, b):
        if not a or not b:
            return 0.0
        dot = sum(x*y for x, y in zip(a, b))
        magA = math.sqrt(sum(x*x for x in a))
        magB = math.sqrt(sum(x*x for x in b))
        if magA == 0 or magB == 0:
            return 0.0
        return dot / (magA*magB)

    results = []
    for f in files:
        emb = f.get('embedding') or []
        if not emb:
            continue
        etype = f.get('embeddingType', 'sbert')
        score = 0.0
        try:
            if etype == 'clip_image':
                # compare clip_text_emb with image embedding
                score = cosine(clip_text_emb, emb)
            elif etype == 'sbert':
                score = cosine(sbert_emb, emb)
            else:
                # fallback: combine both
                score1 = cosine(sbert_emb, emb)
                score2 = cosine(clip_text_emb, emb)
                score = max(score1, score2)
        except Exception:
            score = 0.0
        results.append({'fileId': str(f['_id']), 'filename': f.get('filename'), 'category': f.get('category'), 'score': float(score)})

    results.sort(key=lambda x: x['score'], reverse=True)
    return { 'results': results }