Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,47 +3,58 @@ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
from pathlib import Path
|
|
|
|
| 7 |
|
| 8 |
-
# Load model and feature extractor
|
| 9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 11 |
-
model.eval()
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
with torch.no_grad():
|
| 19 |
outputs = model(**encoding)
|
| 20 |
predicted_depth = outputs.predicted_depth
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
prediction = torch.nn.functional.interpolate(
|
| 24 |
predicted_depth.unsqueeze(1),
|
| 25 |
-
size=image.size[::-1],
|
| 26 |
mode="bicubic",
|
| 27 |
-
align_corners=False
|
| 28 |
).squeeze()
|
| 29 |
-
|
| 30 |
-
# Chuyển thành ảnh uint8
|
| 31 |
output = prediction.cpu().numpy()
|
| 32 |
-
|
| 33 |
-
img = Image.fromarray(
|
| 34 |
return [img]
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
iface = gr.Interface(
|
| 41 |
-
fn=process_image,
|
| 42 |
-
inputs=gr.
|
| 43 |
-
outputs=
|
|
|
|
|
|
|
| 44 |
title=title,
|
| 45 |
description=description,
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
-
|
| 49 |
-
iface.launch(debug=True)
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
+
import open3d as o3d
|
| 7 |
from pathlib import Path
|
| 8 |
+
import os
|
| 9 |
|
|
|
|
| 10 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 11 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
|
|
|
| 12 |
|
| 13 |
+
|
| 14 |
+
def process_image(image_path):
|
| 15 |
+
image_path = Path(image_path)
|
| 16 |
+
image_raw = Image.open(image_path)
|
| 17 |
+
image = image_raw.resize(
|
| 18 |
+
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
| 19 |
+
Image.Resampling.LANCZOS,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# prepare image for the model
|
| 23 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 24 |
+
|
| 25 |
+
# forward pass
|
| 26 |
with torch.no_grad():
|
| 27 |
outputs = model(**encoding)
|
| 28 |
predicted_depth = outputs.predicted_depth
|
| 29 |
+
|
| 30 |
+
# interpolate to original size
|
| 31 |
prediction = torch.nn.functional.interpolate(
|
| 32 |
predicted_depth.unsqueeze(1),
|
| 33 |
+
size=image.size[::-1],
|
| 34 |
mode="bicubic",
|
| 35 |
+
align_corners=False,
|
| 36 |
).squeeze()
|
|
|
|
|
|
|
| 37 |
output = prediction.cpu().numpy()
|
| 38 |
+
depth_image = (output * 255 / np.max(output)).astype("uint8")
|
| 39 |
+
img = Image.fromarray(depth_image)
|
| 40 |
return [img]
|
| 41 |
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
|
| 45 |
+
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
| 46 |
+
examples = [["examples/" + img] for img in os.listdir("examples/")]
|
| 47 |
|
| 48 |
iface = gr.Interface(
|
| 49 |
+
fn=process_image,
|
| 50 |
+
inputs=[gr.Image(type="filepath", label="Input Image")],
|
| 51 |
+
outputs=[
|
| 52 |
+
gr.Image(label="predicted depth", type="pil"),
|
| 53 |
+
],
|
| 54 |
title=title,
|
| 55 |
description=description,
|
| 56 |
+
examples=examples,
|
| 57 |
+
allow_flagging="never",
|
| 58 |
+
cache_examples=False,
|
| 59 |
)
|
| 60 |
+
iface.launch(debug=True, show_api=False)
|
|
|