Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import torch.nn as nn | |
| from loguru import logger | |
| import torch.nn.functional as F | |
| from yacs.config import CfgNode as CN | |
| models = [ | |
| 'hrnet_w32', | |
| 'hrnet_w48', | |
| ] | |
| BN_MOMENTUM = 0.1 | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=1, bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
| padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, | |
| bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion, | |
| momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class HighResolutionModule(nn.Module): | |
| def __init__(self, num_branches, blocks, num_blocks, num_inchannels, | |
| num_channels, fuse_method, multi_scale_output=True): | |
| super(HighResolutionModule, self).__init__() | |
| self._check_branches( | |
| num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
| self.num_inchannels = num_inchannels | |
| self.fuse_method = fuse_method | |
| self.num_branches = num_branches | |
| self.multi_scale_output = multi_scale_output | |
| self.branches = self._make_branches( | |
| num_branches, blocks, num_blocks, num_channels) | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU(True) | |
| def _check_branches(self, num_branches, blocks, num_blocks, | |
| num_inchannels, num_channels): | |
| if num_branches != len(num_blocks): | |
| error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
| num_branches, len(num_blocks)) | |
| logger.error(error_msg) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_channels): | |
| error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
| num_branches, len(num_channels)) | |
| logger.error(error_msg) | |
| raise ValueError(error_msg) | |
| if num_branches != len(num_inchannels): | |
| error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
| num_branches, len(num_inchannels)) | |
| logger.error(error_msg) | |
| raise ValueError(error_msg) | |
| def _make_one_branch(self, branch_index, block, num_blocks, num_channels, | |
| stride=1): | |
| downsample = None | |
| if stride != 1 or \ | |
| self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index] * block.expansion, | |
| kernel_size=1, stride=stride, bias=False | |
| ), | |
| nn.BatchNorm2d( | |
| num_channels[branch_index] * block.expansion, | |
| momentum=BN_MOMENTUM | |
| ), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index], | |
| stride, | |
| downsample | |
| ) | |
| ) | |
| self.num_inchannels[branch_index] = \ | |
| num_channels[branch_index] * block.expansion | |
| for i in range(1, num_blocks[branch_index]): | |
| layers.append( | |
| block( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index] | |
| ) | |
| ) | |
| return nn.Sequential(*layers) | |
| def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append( | |
| self._make_one_branch(i, block, num_blocks, num_channels) | |
| ) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| num_inchannels = self.num_inchannels | |
| fuse_layers = [] | |
| for i in range(num_branches if self.multi_scale_output else 1): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_inchannels[i], | |
| 1, 1, 0, bias=False | |
| ), | |
| nn.BatchNorm2d(num_inchannels[i]), | |
| nn.Upsample(scale_factor=2**(j-i), mode='nearest') | |
| ) | |
| ) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv3x3s = [] | |
| for k in range(i-j): | |
| if k == i - j - 1: | |
| num_outchannels_conv3x3 = num_inchannels[i] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, 2, 1, bias=False | |
| ), | |
| nn.BatchNorm2d(num_outchannels_conv3x3) | |
| ) | |
| ) | |
| else: | |
| num_outchannels_conv3x3 = num_inchannels[j] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_inchannels[j], | |
| num_outchannels_conv3x3, | |
| 3, 2, 1, bias=False | |
| ), | |
| nn.BatchNorm2d(num_outchannels_conv3x3), | |
| nn.ReLU(True) | |
| ) | |
| ) | |
| fuse_layer.append(nn.Sequential(*conv3x3s)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def get_num_inchannels(self): | |
| return self.num_inchannels | |
| def forward(self, x): | |
| if self.num_branches == 1: | |
| return [self.branches[0](x[0])] | |
| for i in range(self.num_branches): | |
| x[i] = self.branches[i](x[i]) | |
| x_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
| for j in range(1, self.num_branches): | |
| if i == j: | |
| y = y + x[j] | |
| else: | |
| y = y + self.fuse_layers[i][j](x[j]) | |
| x_fuse.append(self.relu(y)) | |
| return x_fuse | |
| blocks_dict = { | |
| 'BASIC': BasicBlock, | |
| 'BOTTLENECK': Bottleneck | |
| } | |
| class PoseHighResolutionNet(nn.Module): | |
| def __init__(self, cfg): | |
| self.inplanes = 64 | |
| extra = cfg['MODEL']['EXTRA'] | |
| super(PoseHighResolutionNet, self).__init__() | |
| self.cfg = extra | |
| # stem net | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, | |
| bias=False) | |
| self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, | |
| bias=False) | |
| self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.layer1 = self._make_layer(Bottleneck, 64, 4) | |
| self.stage2_cfg = extra['STAGE2'] | |
| num_channels = self.stage2_cfg['NUM_CHANNELS'] | |
| block = blocks_dict[self.stage2_cfg['BLOCK']] | |
| num_channels = [ | |
| num_channels[i] * block.expansion for i in range(len(num_channels)) | |
| ] | |
| self.transition1 = self._make_transition_layer([256], num_channels) | |
| self.stage2, pre_stage_channels = self._make_stage( | |
| self.stage2_cfg, num_channels) | |
| self.stage3_cfg = extra['STAGE3'] | |
| num_channels = self.stage3_cfg['NUM_CHANNELS'] | |
| block = blocks_dict[self.stage3_cfg['BLOCK']] | |
| num_channels = [ | |
| num_channels[i] * block.expansion for i in range(len(num_channels)) | |
| ] | |
| self.transition2 = self._make_transition_layer( | |
| pre_stage_channels, num_channels) | |
| self.stage3, pre_stage_channels = self._make_stage( | |
| self.stage3_cfg, num_channels) | |
| self.stage4_cfg = extra['STAGE4'] | |
| num_channels = self.stage4_cfg['NUM_CHANNELS'] | |
| block = blocks_dict[self.stage4_cfg['BLOCK']] | |
| num_channels = [ | |
| num_channels[i] * block.expansion for i in range(len(num_channels)) | |
| ] | |
| self.transition3 = self._make_transition_layer( | |
| pre_stage_channels, num_channels) | |
| self.stage4, pre_stage_channels = self._make_stage( | |
| self.stage4_cfg, num_channels, multi_scale_output=True) | |
| self.final_layer = nn.Conv2d( | |
| in_channels=pre_stage_channels[0], | |
| out_channels=cfg['MODEL']['NUM_JOINTS'], | |
| kernel_size=extra['FINAL_CONV_KERNEL'], | |
| stride=1, | |
| padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0 | |
| ) | |
| self.pretrained_layers = extra['PRETRAINED_LAYERS'] | |
| if extra.DOWNSAMPLE and extra.USE_CONV: | |
| self.downsample_stage_1 = self._make_downsample_layer(3, num_channel=self.stage2_cfg['NUM_CHANNELS'][0]) | |
| self.downsample_stage_2 = self._make_downsample_layer(2, num_channel=self.stage2_cfg['NUM_CHANNELS'][-1]) | |
| self.downsample_stage_3 = self._make_downsample_layer(1, num_channel=self.stage3_cfg['NUM_CHANNELS'][-1]) | |
| elif not extra.DOWNSAMPLE and extra.USE_CONV: | |
| self.upsample_stage_2 = self._make_upsample_layer(1, num_channel=self.stage2_cfg['NUM_CHANNELS'][-1]) | |
| self.upsample_stage_3 = self._make_upsample_layer(2, num_channel=self.stage3_cfg['NUM_CHANNELS'][-1]) | |
| self.upsample_stage_4 = self._make_upsample_layer(3, num_channel=self.stage4_cfg['NUM_CHANNELS'][-1]) | |
| def _make_transition_layer( | |
| self, num_channels_pre_layer, num_channels_cur_layer): | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| num_channels_pre_layer[i], | |
| num_channels_cur_layer[i], | |
| 3, 1, 1, bias=False | |
| ), | |
| nn.BatchNorm2d(num_channels_cur_layer[i]), | |
| nn.ReLU(inplace=True) | |
| ) | |
| ) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv3x3s = [] | |
| for j in range(i+1-num_branches_pre): | |
| inchannels = num_channels_pre_layer[-1] | |
| outchannels = num_channels_cur_layer[i] \ | |
| if j == i-num_branches_pre else inchannels | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d( | |
| inchannels, outchannels, 3, 2, 1, bias=False | |
| ), | |
| nn.BatchNorm2d(outchannels), | |
| nn.ReLU(inplace=True) | |
| ) | |
| ) | |
| transition_layers.append(nn.Sequential(*conv3x3s)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.inplanes, planes * block.expansion, | |
| kernel_size=1, stride=stride, bias=False | |
| ), | |
| nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def _make_stage(self, layer_config, num_inchannels, | |
| multi_scale_output=True): | |
| num_modules = layer_config['NUM_MODULES'] | |
| num_branches = layer_config['NUM_BRANCHES'] | |
| num_blocks = layer_config['NUM_BLOCKS'] | |
| num_channels = layer_config['NUM_CHANNELS'] | |
| block = blocks_dict[layer_config['BLOCK']] | |
| fuse_method = layer_config['FUSE_METHOD'] | |
| modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used last module | |
| if not multi_scale_output and i == num_modules - 1: | |
| reset_multi_scale_output = False | |
| else: | |
| reset_multi_scale_output = True | |
| modules.append( | |
| HighResolutionModule( | |
| num_branches, | |
| block, | |
| num_blocks, | |
| num_inchannels, | |
| num_channels, | |
| fuse_method, | |
| reset_multi_scale_output | |
| ) | |
| ) | |
| num_inchannels = modules[-1].get_num_inchannels() | |
| return nn.Sequential(*modules), num_inchannels | |
| def _make_upsample_layer(self, num_layers, num_channel, kernel_size=3): | |
| layers = [] | |
| for i in range(num_layers): | |
| layers.append(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)) | |
| layers.append( | |
| nn.Conv2d( | |
| in_channels=num_channel, out_channels=num_channel, | |
| kernel_size=kernel_size, stride=1, padding=1, bias=False, | |
| ) | |
| ) | |
| layers.append(nn.BatchNorm2d(num_channel, momentum=BN_MOMENTUM)) | |
| layers.append(nn.ReLU(inplace=True)) | |
| return nn.Sequential(*layers) | |
| def _make_downsample_layer(self, num_layers, num_channel, kernel_size=3): | |
| layers = [] | |
| for i in range(num_layers): | |
| layers.append( | |
| nn.Conv2d( | |
| in_channels=num_channel, out_channels=num_channel, | |
| kernel_size=kernel_size, stride=2, padding=1, bias=False, | |
| ) | |
| ) | |
| layers.append(nn.BatchNorm2d(num_channel, momentum=BN_MOMENTUM)) | |
| layers.append(nn.ReLU(inplace=True)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.conv2(x) | |
| x = self.bn2(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x_list = [] | |
| for i in range(self.stage2_cfg['NUM_BRANCHES']): | |
| if self.transition1[i] is not None: | |
| x_list.append(self.transition1[i](x)) | |
| else: | |
| x_list.append(x) | |
| y_list = self.stage2(x_list) | |
| x_list = [] | |
| for i in range(self.stage3_cfg['NUM_BRANCHES']): | |
| if self.transition2[i] is not None: | |
| x_list.append(self.transition2[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage3(x_list) | |
| x_list = [] | |
| for i in range(self.stage4_cfg['NUM_BRANCHES']): | |
| if self.transition3[i] is not None: | |
| x_list.append(self.transition3[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| x = self.stage4(x_list) | |
| if self.cfg.DOWNSAMPLE: | |
| if self.cfg.USE_CONV: | |
| # Downsampling with strided convolutions | |
| x1 = self.downsample_stage_1(x[0]) | |
| x2 = self.downsample_stage_2(x[1]) | |
| x3 = self.downsample_stage_3(x[2]) | |
| x = torch.cat([x1, x2, x3, x[3]], 1) | |
| else: | |
| # Downsampling with interpolation | |
| x0_h, x0_w = x[3].size(2), x[3].size(3) | |
| x1 = F.interpolate(x[0], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
| x2 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
| x3 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
| x = torch.cat([x1, x2, x3, x[3]], 1) | |
| else: | |
| if self.cfg.USE_CONV: | |
| # Upsampling with interpolations + convolutions | |
| x1 = self.upsample_stage_2(x[1]) | |
| x2 = self.upsample_stage_3(x[2]) | |
| x3 = self.upsample_stage_4(x[3]) | |
| x = torch.cat([x[0], x1, x2, x3], 1) | |
| else: | |
| # Upsampling with interpolation | |
| x0_h, x0_w = x[0].size(2), x[0].size(3) | |
| x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
| x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
| x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=True) | |
| x = torch.cat([x[0], x1, x2, x3], 1) | |
| return x | |
| def init_weights(self, pretrained=''): | |
| logger.info('=> init weights from normal distribution') | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| nn.init.normal_(m.weight, std=0.001) | |
| for name, _ in m.named_parameters(): | |
| if name in ['bias']: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.ConvTranspose2d): | |
| nn.init.normal_(m.weight, std=0.001) | |
| for name, _ in m.named_parameters(): | |
| if name in ['bias']: | |
| nn.init.constant_(m.bias, 0) | |
| if os.path.isfile(pretrained): | |
| pretrained_state_dict = torch.load(pretrained) | |
| logger.info('=> loading pretrained model {}'.format(pretrained)) | |
| need_init_state_dict = {} | |
| for name, m in pretrained_state_dict.items(): | |
| if name.split('.')[0] in self.pretrained_layers \ | |
| or self.pretrained_layers[0] == '*': | |
| need_init_state_dict[name] = m | |
| self.load_state_dict(need_init_state_dict, strict=False) | |
| elif pretrained: | |
| logger.warning('IMPORTANT WARNING!! Please download pre-trained models if you are in TRAINING mode!') | |
| # raise ValueError('{} is not exist!'.format(pretrained)) | |
| def get_pose_net(cfg, is_train): | |
| model = PoseHighResolutionNet(cfg) | |
| if is_train and cfg['MODEL']['INIT_WEIGHTS']: | |
| model.init_weights(cfg['MODEL']['PRETRAINED']) | |
| return model | |
| def get_cfg_defaults(pretrained, width=32, downsample=False, use_conv=False): | |
| # pose_multi_resoluton_net related params | |
| HRNET = CN() | |
| HRNET.PRETRAINED_LAYERS = [ | |
| 'conv1', 'bn1', 'conv2', 'bn2', 'layer1', 'transition1', | |
| 'stage2', 'transition2', 'stage3', 'transition3', 'stage4', | |
| ] | |
| HRNET.STEM_INPLANES = 64 | |
| HRNET.FINAL_CONV_KERNEL = 1 | |
| HRNET.STAGE2 = CN() | |
| HRNET.STAGE2.NUM_MODULES = 1 | |
| HRNET.STAGE2.NUM_BRANCHES = 2 | |
| HRNET.STAGE2.NUM_BLOCKS = [4, 4] | |
| HRNET.STAGE2.NUM_CHANNELS = [width, width*2] | |
| HRNET.STAGE2.BLOCK = 'BASIC' | |
| HRNET.STAGE2.FUSE_METHOD = 'SUM' | |
| HRNET.STAGE3 = CN() | |
| HRNET.STAGE3.NUM_MODULES = 4 | |
| HRNET.STAGE3.NUM_BRANCHES = 3 | |
| HRNET.STAGE3.NUM_BLOCKS = [4, 4, 4] | |
| HRNET.STAGE3.NUM_CHANNELS = [width, width*2, width*4] | |
| HRNET.STAGE3.BLOCK = 'BASIC' | |
| HRNET.STAGE3.FUSE_METHOD = 'SUM' | |
| HRNET.STAGE4 = CN() | |
| HRNET.STAGE4.NUM_MODULES = 3 | |
| HRNET.STAGE4.NUM_BRANCHES = 4 | |
| HRNET.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] | |
| HRNET.STAGE4.NUM_CHANNELS = [width, width*2, width*4, width*8] | |
| HRNET.STAGE4.BLOCK = 'BASIC' | |
| HRNET.STAGE4.FUSE_METHOD = 'SUM' | |
| HRNET.DOWNSAMPLE = downsample | |
| HRNET.USE_CONV = use_conv | |
| cfg = CN() | |
| cfg.MODEL = CN() | |
| cfg.MODEL.INIT_WEIGHTS = True | |
| cfg.MODEL.PRETRAINED = pretrained # 'data/pretrained_models/hrnet_w32-36af842e.pth' | |
| cfg.MODEL.EXTRA = HRNET | |
| cfg.MODEL.NUM_JOINTS = 24 | |
| return cfg | |
| def hrnet_w32( | |
| pretrained=True, | |
| pretrained_ckpt='data/weights/pose_hrnet_w32_256x192.pth', | |
| downsample=False, | |
| use_conv=False, | |
| ): | |
| cfg = get_cfg_defaults(pretrained_ckpt, width=32, downsample=downsample, use_conv=use_conv) | |
| return get_pose_net(cfg, is_train=True) | |
| def hrnet_w48( | |
| pretrained=True, | |
| pretrained_ckpt='data/weights/pose_hrnet_w48_256x192.pth', | |
| downsample=False, | |
| use_conv=False, | |
| ): | |
| cfg = get_cfg_defaults(pretrained_ckpt, width=48, downsample=downsample, use_conv=use_conv) | |
| return get_pose_net(cfg, is_train=True) |