|
|
""" |
|
|
Main Dash application for Chronos 2 Time Series Forecasting |
|
|
""" |
|
|
|
|
|
import base64 |
|
|
import io |
|
|
import logging |
|
|
from pathlib import Path |
|
|
from dash import Dash, html, dcc, Input, Output, State, callback_context |
|
|
import dash_bootstrap_components as dbc |
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
from components.upload import ( |
|
|
create_upload_component, |
|
|
create_column_selector, |
|
|
create_sample_data_loader, |
|
|
format_upload_status, |
|
|
create_data_preview_table, |
|
|
create_quality_report |
|
|
) |
|
|
from components.chart import ( |
|
|
create_forecast_chart, |
|
|
create_empty_chart, |
|
|
create_metrics_display, |
|
|
create_backtest_metrics_display, |
|
|
decimate_data |
|
|
) |
|
|
from components.controls import ( |
|
|
create_forecast_controls, |
|
|
create_model_status_bar, |
|
|
create_results_section, |
|
|
create_app_header, |
|
|
create_footer |
|
|
) |
|
|
|
|
|
|
|
|
from services.model_service import model_service |
|
|
from services.data_processor import data_processor |
|
|
from services.cache_manager import cache_manager |
|
|
|
|
|
|
|
|
from utils.validators import ( |
|
|
validate_file_upload, |
|
|
validate_column_selection, |
|
|
validate_forecast_parameters |
|
|
) |
|
|
from utils.metrics import calculate_metrics |
|
|
|
|
|
|
|
|
from config.settings import CONFIG, APP_METADATA, LOG_LEVEL, LOG_FORMAT, LOG_FILE, setup_directories |
|
|
from config.constants import MAX_CHART_POINTS |
|
|
|
|
|
|
|
|
def setup_logging(): |
|
|
"""Configure logging to write to both file and console""" |
|
|
|
|
|
Path(LOG_FILE).parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
root_logger = logging.getLogger() |
|
|
root_logger.setLevel(LOG_LEVEL) |
|
|
|
|
|
|
|
|
root_logger.handlers = [] |
|
|
|
|
|
|
|
|
formatter = logging.Formatter(LOG_FORMAT) |
|
|
|
|
|
|
|
|
file_handler = logging.FileHandler(LOG_FILE, mode='a', encoding='utf-8') |
|
|
file_handler.setLevel(LOG_LEVEL) |
|
|
file_handler.setFormatter(formatter) |
|
|
root_logger.addHandler(file_handler) |
|
|
|
|
|
|
|
|
console_handler = logging.StreamHandler() |
|
|
console_handler.setLevel(LOG_LEVEL) |
|
|
console_handler.setFormatter(formatter) |
|
|
root_logger.addHandler(console_handler) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
logger.info(f"Logging configured - writing to {LOG_FILE}") |
|
|
return logger |
|
|
|
|
|
logger = setup_logging() |
|
|
|
|
|
|
|
|
app = Dash( |
|
|
__name__, |
|
|
external_stylesheets=[ |
|
|
dbc.themes.BOOTSTRAP, |
|
|
'https://use.fontawesome.com/releases/v5.15.4/css/all.css' |
|
|
], |
|
|
suppress_callback_exceptions=True, |
|
|
title=APP_METADATA['title'] |
|
|
) |
|
|
|
|
|
|
|
|
app.layout = dbc.Container([ |
|
|
|
|
|
create_app_header(), |
|
|
|
|
|
|
|
|
html.Div(id='model-status-bar'), |
|
|
|
|
|
|
|
|
dcc.Store(id='uploaded-data-store'), |
|
|
dcc.Store(id='processed-data-store'), |
|
|
dcc.Store(id='forecast-results-store'), |
|
|
|
|
|
|
|
|
create_sample_data_loader(), |
|
|
|
|
|
|
|
|
create_upload_component(), |
|
|
|
|
|
|
|
|
create_column_selector(), |
|
|
|
|
|
|
|
|
create_forecast_controls(), |
|
|
|
|
|
|
|
|
create_results_section(), |
|
|
|
|
|
|
|
|
create_footer() |
|
|
|
|
|
], fluid=True, className="py-4") |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
Output('model-status-bar', 'children'), |
|
|
Input('model-status-bar', 'id') |
|
|
) |
|
|
def load_model_on_startup(_): |
|
|
"""Load the model when the app starts""" |
|
|
logger.info("=" * 80) |
|
|
logger.info("CALLBACK: load_model_on_startup - ENTRY") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
try: |
|
|
logger.info("Attempting to load Chronos-2 model...") |
|
|
result = model_service.load_model() |
|
|
|
|
|
logger.info(f"Model loading result: {result}") |
|
|
|
|
|
if result['status'] == 'success': |
|
|
logger.info("β Model loaded successfully - returning 'ready' status bar") |
|
|
status_bar = create_model_status_bar('ready') |
|
|
logger.info(f"Status bar created: {type(status_bar)}") |
|
|
return status_bar |
|
|
else: |
|
|
logger.error(f"β Model loading failed: {result.get('error')}") |
|
|
return create_model_status_bar('error') |
|
|
except Exception as e: |
|
|
logger.error(f"β EXCEPTION in load_model_on_startup: {str(e)}", exc_info=True) |
|
|
return create_model_status_bar('error') |
|
|
finally: |
|
|
logger.info("CALLBACK: load_model_on_startup - EXIT") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
[Output('uploaded-data-store', 'data'), |
|
|
Output('upload-status', 'children'), |
|
|
Output('column-selector-card', 'style'), |
|
|
Output('date-column-dropdown', 'options'), |
|
|
Output('target-column-dropdown', 'options'), |
|
|
Output('id-column-dropdown', 'options'), |
|
|
Output('covariate-columns-dropdown', 'options')], |
|
|
Input('upload-data', 'contents'), |
|
|
State('upload-data', 'filename') |
|
|
) |
|
|
def handle_file_upload(contents, filename): |
|
|
"""Handle file upload and extract column information""" |
|
|
logger.info("=" * 80) |
|
|
logger.info("CALLBACK: handle_file_upload - ENTRY") |
|
|
logger.info(f"Filename: {filename}") |
|
|
logger.info(f"Contents received: {contents is not None}") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
if contents is None: |
|
|
logger.warning("No contents provided - returning empty response") |
|
|
return None, '', {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
try: |
|
|
|
|
|
content_type, content_string = contents.split(',') |
|
|
decoded = base64.b64decode(content_string) |
|
|
|
|
|
|
|
|
validation = validate_file_upload(filename, len(decoded)) |
|
|
if not validation['valid']: |
|
|
error_msg = ' '.join(validation['issues']) |
|
|
logger.warning(f"File upload validation failed: {error_msg}") |
|
|
return None, format_upload_status('error', error_msg, True), {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
|
|
|
import re |
|
|
safe_filename = re.sub(r'[^\w\-\.]', '_', filename) |
|
|
if safe_filename != filename: |
|
|
logger.info(f"Sanitized filename from '{filename}' to '{safe_filename}'") |
|
|
|
|
|
|
|
|
logger.info(f"Loading file with data_processor: {len(decoded)} bytes") |
|
|
result = data_processor.load_file(decoded, filename) |
|
|
logger.info(f"Load result status: {result['status']}") |
|
|
|
|
|
if result['status'] == 'error': |
|
|
logger.error(f"β File loading error: {result['error']}") |
|
|
return None, format_upload_status('error', result['error'], True), {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
|
|
|
logger.info("Getting column information from data_processor") |
|
|
col_info = data_processor.get_column_info() |
|
|
logger.info(f"Column info: date_cols={col_info['date_columns']}, numeric_cols={col_info['numeric_columns'][:5]}...") |
|
|
|
|
|
|
|
|
date_options = [{'label': col, 'value': col} for col in col_info['date_columns']] |
|
|
target_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']] |
|
|
id_options = [{'label': col, 'value': col} for col in col_info['all_columns']] |
|
|
|
|
|
covariate_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']] |
|
|
|
|
|
logger.info(f"Created dropdown options: {len(date_options)} date, {len(target_options)} target, {len(id_options)} id, {len(covariate_options)} covariate") |
|
|
|
|
|
success_msg = f"Successfully loaded {filename} ({len(result['data'])} rows, {len(result['data'].columns)} columns)" |
|
|
logger.info(f"β {success_msg}") |
|
|
|
|
|
logger.info("CALLBACK: handle_file_upload - EXIT (success)") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
return ( |
|
|
result['metadata'], |
|
|
format_upload_status('success', success_msg), |
|
|
{'display': 'block'}, |
|
|
date_options, |
|
|
target_options, |
|
|
id_options, |
|
|
covariate_options |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"β EXCEPTION in handle_file_upload: {str(e)}", exc_info=True) |
|
|
logger.info("CALLBACK: handle_file_upload - EXIT (exception)") |
|
|
logger.info("=" * 80) |
|
|
return None, format_upload_status('error', f"Error: {str(e)}", True), {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
[Output('uploaded-data-store', 'data', allow_duplicate=True), |
|
|
Output('upload-status', 'children', allow_duplicate=True), |
|
|
Output('column-selector-card', 'style', allow_duplicate=True), |
|
|
Output('date-column-dropdown', 'options', allow_duplicate=True), |
|
|
Output('target-column-dropdown', 'options', allow_duplicate=True), |
|
|
Output('id-column-dropdown', 'options', allow_duplicate=True), |
|
|
Output('covariate-columns-dropdown', 'options', allow_duplicate=True)], |
|
|
[Input('load-weather', 'n_clicks'), |
|
|
Input('load-airquality', 'n_clicks'), |
|
|
Input('load-bitcoin', 'n_clicks'), |
|
|
Input('load-stock', 'n_clicks'), |
|
|
Input('load-traffic', 'n_clicks'), |
|
|
Input('load-electricity', 'n_clicks')], |
|
|
prevent_initial_call=True |
|
|
) |
|
|
def load_sample_data(weather_clicks, airquality_clicks, bitcoin_clicks, stock_clicks, traffic_clicks, electricity_clicks): |
|
|
"""Load sample datasets""" |
|
|
ctx = callback_context |
|
|
if not ctx.triggered: |
|
|
return None, '', {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
button_id = ctx.triggered[0]['prop_id'].split('.')[0] |
|
|
|
|
|
|
|
|
sample_files = { |
|
|
'load-weather': 'weather_stations.csv', |
|
|
'load-airquality': 'air_quality_uci.csv', |
|
|
'load-bitcoin': 'bitcoin_price.csv', |
|
|
'load-stock': 'stock_sp500.csv', |
|
|
'load-traffic': 'traffic_speeds.csv', |
|
|
'load-electricity': 'electricity_consumption.csv' |
|
|
} |
|
|
|
|
|
filename = sample_files.get(button_id) |
|
|
if not filename: |
|
|
return None, '', {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
try: |
|
|
|
|
|
filepath = f"{CONFIG['datasets_folder']}/{filename}" |
|
|
with open(filepath, 'rb') as f: |
|
|
contents = f.read() |
|
|
|
|
|
result = data_processor.load_file(contents, filename) |
|
|
|
|
|
if result['status'] == 'error': |
|
|
return None, format_upload_status('error', result['error'], True), {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
|
|
|
col_info = data_processor.get_column_info() |
|
|
|
|
|
date_options = [{'label': col, 'value': col} for col in col_info['date_columns']] |
|
|
target_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']] |
|
|
id_options = [{'label': col, 'value': col} for col in col_info['all_columns']] |
|
|
covariate_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']] |
|
|
|
|
|
success_msg = f"Loaded sample dataset: {filename}" |
|
|
|
|
|
return ( |
|
|
result['metadata'], |
|
|
format_upload_status('success', success_msg), |
|
|
{'display': 'block'}, |
|
|
date_options, |
|
|
target_options, |
|
|
id_options, |
|
|
covariate_options |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error loading sample data: {str(e)}", exc_info=True) |
|
|
error_msg = f"Sample data not found. Please ensure datasets folder exists: {CONFIG['datasets_folder']}" |
|
|
return None, format_upload_status('warning', error_msg), {'display': 'none'}, [], [], [], [] |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
[Output('covariate-section', 'style'), |
|
|
Output('target-help-text', 'children')], |
|
|
Input('forecasting-mode', 'value') |
|
|
) |
|
|
def update_forecasting_mode(mode): |
|
|
"""Update UI based on selected forecasting mode""" |
|
|
if mode == 'univariate': |
|
|
return ( |
|
|
{'display': 'none'}, |
|
|
'Select ONE target variable (multi-select available, but use only one for univariate)' |
|
|
) |
|
|
elif mode == 'multivariate': |
|
|
return ( |
|
|
{'display': 'none'}, |
|
|
'Select MULTIPLE target variables to forecast together' |
|
|
) |
|
|
else: |
|
|
return ( |
|
|
{'display': 'block'}, |
|
|
'Select target variable(s) to forecast (can select multiple)' |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
Output('backtest-controls', 'style'), |
|
|
Input('backtest-enable', 'value') |
|
|
) |
|
|
def toggle_backtest_controls(backtest_enabled): |
|
|
"""Show/hide backtest controls based on checkbox""" |
|
|
if 'enabled' in backtest_enabled: |
|
|
return {'display': 'block'} |
|
|
return {'display': 'none'} |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
[Output('data-preview-container', 'children'), |
|
|
Output('data-quality-report', 'children'), |
|
|
Output('processed-data-store', 'data'), |
|
|
Output('generate-forecast-btn', 'disabled')], |
|
|
[Input('date-column-dropdown', 'value'), |
|
|
Input('target-column-dropdown', 'value'), |
|
|
Input('forecasting-mode', 'value'), |
|
|
Input('covariate-columns-dropdown', 'value')], |
|
|
State('id-column-dropdown', 'value') |
|
|
) |
|
|
def update_preview_and_process(date_col, target_col, mode, covariate_cols, id_col): |
|
|
"""Update data preview and process data when columns are selected""" |
|
|
logger.info("=" * 80) |
|
|
logger.info("CALLBACK: update_preview_and_process - ENTRY") |
|
|
logger.info(f"date_col: {date_col}") |
|
|
logger.info(f"target_col: {target_col}") |
|
|
logger.info(f"mode: {mode}") |
|
|
logger.info(f"covariate_cols: {covariate_cols}") |
|
|
logger.info(f"id_col: {id_col}") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
if not date_col or not target_col: |
|
|
logger.warning(f"Missing required columns - date_col: {date_col}, target_col: {target_col}") |
|
|
return '', '', None, True |
|
|
|
|
|
try: |
|
|
|
|
|
if not isinstance(target_col, list): |
|
|
target_col = [target_col] if target_col else [] |
|
|
|
|
|
|
|
|
if covariate_cols and not isinstance(covariate_cols, list): |
|
|
covariate_cols = [covariate_cols] |
|
|
|
|
|
|
|
|
|
|
|
for t_col in target_col: |
|
|
validation = validate_column_selection(data_processor.data, date_col, t_col) |
|
|
if not validation['valid']: |
|
|
error_msg = ' '.join(validation['issues']) |
|
|
return format_upload_status('error', error_msg, True), '', None, True |
|
|
|
|
|
|
|
|
preview = create_data_preview_table(data_processor.data) |
|
|
|
|
|
|
|
|
|
|
|
if mode == 'univariate': |
|
|
target_to_process = target_col[0] |
|
|
else: |
|
|
target_to_process = target_col |
|
|
|
|
|
result = data_processor.preprocess( |
|
|
date_column=date_col, |
|
|
target_column=target_to_process, |
|
|
id_column=id_col, |
|
|
forecast_horizon=30 |
|
|
) |
|
|
|
|
|
if result['status'] == 'error': |
|
|
return preview, format_upload_status('error', result['error'], True), None, True |
|
|
|
|
|
|
|
|
quality_report = create_quality_report(result['quality_report']) |
|
|
|
|
|
|
|
|
processed_data = { |
|
|
'data': result['data'].to_json(date_format='iso'), |
|
|
'quality_report': result['quality_report'], |
|
|
'forecasting_mode': mode, |
|
|
'target_columns': target_col, |
|
|
'covariate_columns': covariate_cols if covariate_cols else [], |
|
|
'date_column': date_col, |
|
|
'id_column': id_col |
|
|
} |
|
|
|
|
|
return preview, quality_report, processed_data, False |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error in preview/process: {str(e)}", exc_info=True) |
|
|
return '', format_upload_status('error', f"Error: {str(e)}", True), None, True |
|
|
|
|
|
|
|
|
|
|
|
@app.callback( |
|
|
[Output('forecast-chart', 'figure'), |
|
|
Output('metrics-display', 'children'), |
|
|
Output('results-card', 'style'), |
|
|
Output('loading-output', 'children')], |
|
|
Input('generate-forecast-btn', 'n_clicks'), |
|
|
[State('processed-data-store', 'data'), |
|
|
State('horizon-slider', 'value'), |
|
|
State('confidence-checklist', 'value'), |
|
|
State('backtest-enable', 'value'), |
|
|
State('backtest-size-slider', 'value')], |
|
|
prevent_initial_call=True |
|
|
) |
|
|
def generate_forecast(n_clicks, processed_data, horizon, confidence_levels, backtest_enabled, backtest_size): |
|
|
"""Generate forecast using the Chronos model, optionally with backtesting""" |
|
|
logger.info("=" * 80) |
|
|
logger.info("CALLBACK: generate_forecast - ENTRY") |
|
|
logger.info(f"n_clicks: {n_clicks}") |
|
|
logger.info(f"horizon: {horizon}") |
|
|
logger.info(f"confidence_levels: {confidence_levels}") |
|
|
logger.info(f"processed_data is None: {processed_data is None}") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
if not processed_data or not n_clicks: |
|
|
logger.warning(f"Early return - processed_data exists: {processed_data is not None}, n_clicks: {n_clicks}") |
|
|
return create_empty_chart(), '', {'display': 'none'}, '' |
|
|
|
|
|
try: |
|
|
|
|
|
logger.info("Loading processed data from JSON...") |
|
|
df = pd.read_json(processed_data['data']) |
|
|
logger.info(f"Loaded DataFrame: shape={df.shape}, columns={df.columns.tolist()}") |
|
|
|
|
|
|
|
|
mode = processed_data.get('forecasting_mode', 'univariate') |
|
|
target_columns = processed_data.get('target_columns', []) |
|
|
covariate_columns = processed_data.get('covariate_columns', []) |
|
|
|
|
|
logger.info(f"Forecasting mode: {mode}") |
|
|
logger.info(f"Target columns: {target_columns}") |
|
|
logger.info(f"Covariate columns: {covariate_columns}") |
|
|
|
|
|
|
|
|
logger.info("Validating forecast parameters...") |
|
|
validation = validate_forecast_parameters(horizon, confidence_levels, len(df)) |
|
|
logger.info(f"Validation result: {validation}") |
|
|
|
|
|
if not validation['valid']: |
|
|
error_msg = ' '.join(validation['issues']) |
|
|
logger.error(f"β Validation failed: {error_msg}") |
|
|
return create_empty_chart(error_msg), '', {'display': 'none'}, '' |
|
|
|
|
|
|
|
|
backtest_df = None |
|
|
backtest_metrics = None |
|
|
|
|
|
if backtest_enabled and 'enabled' in backtest_enabled: |
|
|
logger.info(f"Backtesting enabled with test_size={backtest_size}") |
|
|
|
|
|
backtest_result = model_service.backtest( |
|
|
data=df, |
|
|
test_size=min(backtest_size, len(df) // 3), |
|
|
forecast_horizon=horizon, |
|
|
confidence_levels=confidence_levels |
|
|
) |
|
|
|
|
|
if backtest_result['status'] == 'success': |
|
|
backtest_df = backtest_result['backtest_data'] |
|
|
backtest_metrics = backtest_result['metrics'] |
|
|
logger.info(f"β Backtest completed: {backtest_metrics}") |
|
|
else: |
|
|
logger.warning(f"Backtest failed: {backtest_result.get('error', 'Unknown error')}") |
|
|
|
|
|
|
|
|
logger.info(f"Calling model_service.predict() - horizon={horizon}, confidence={confidence_levels}, mode={mode}") |
|
|
logger.info(f"Model service state: is_loaded={model_service.is_loaded}, variant={model_service.model_variant}") |
|
|
|
|
|
forecast_result = model_service.predict( |
|
|
data=df, |
|
|
horizon=horizon, |
|
|
confidence_levels=confidence_levels |
|
|
) |
|
|
|
|
|
logger.info(f"Forecast result status: {forecast_result['status']}") |
|
|
|
|
|
if forecast_result['status'] == 'error': |
|
|
logger.error(f"β Forecast generation failed: {forecast_result['error']}") |
|
|
return create_empty_chart(f"Forecast failed: {forecast_result['error']}"), '', {'display': 'none'}, '' |
|
|
|
|
|
|
|
|
forecast_df = forecast_result['forecast'] |
|
|
logger.info(f"Forecast DataFrame shape: {forecast_df.shape}, columns: {forecast_df.columns.tolist()}") |
|
|
|
|
|
|
|
|
logger.info("Decimating data for chart...") |
|
|
historical_decimated = decimate_data(df, MAX_CHART_POINTS // 2) |
|
|
forecast_decimated = decimate_data(forecast_df, MAX_CHART_POINTS // 2) |
|
|
logger.info(f"Decimated - historical: {len(historical_decimated)}, forecast: {len(forecast_decimated)}") |
|
|
|
|
|
|
|
|
logger.info("Renaming columns for chart...") |
|
|
historical_for_chart = historical_decimated.rename(columns={ |
|
|
'timestamp': 'ds', |
|
|
'target': 'y' |
|
|
}) |
|
|
logger.info(f"Historical chart data columns: {historical_for_chart.columns.tolist()}") |
|
|
|
|
|
|
|
|
logger.info("Creating forecast chart...") |
|
|
primary_target = target_columns[0] if target_columns else 'Target' |
|
|
|
|
|
if mode == 'multivariate' and len(target_columns) > 1: |
|
|
chart_title = f"Forecast: {primary_target} (with {', '.join(target_columns[1:])} as covariates)" |
|
|
y_label = primary_target |
|
|
elif covariate_columns: |
|
|
chart_title = f"Forecast: {primary_target} (with covariates)" |
|
|
y_label = primary_target |
|
|
else: |
|
|
chart_title = f"Forecast: {primary_target}" |
|
|
y_label = primary_target |
|
|
|
|
|
fig = create_forecast_chart( |
|
|
historical_data=historical_for_chart, |
|
|
forecast_data=forecast_decimated, |
|
|
confidence_levels=confidence_levels, |
|
|
title=chart_title, |
|
|
y_axis_label=y_label, |
|
|
backtest_data=backtest_df |
|
|
) |
|
|
logger.info(f"Chart created: {type(fig)}") |
|
|
|
|
|
|
|
|
metrics = { |
|
|
'inference_time': forecast_result['inference_time'], |
|
|
'data_points': len(df), |
|
|
'horizon': horizon |
|
|
} |
|
|
logger.info(f"Creating metrics display: {metrics}") |
|
|
|
|
|
|
|
|
if backtest_metrics: |
|
|
metrics_components = dbc.Row([ |
|
|
dbc.Col(create_metrics_display(metrics, forecast_result['inference_time']), md=6), |
|
|
dbc.Col(create_backtest_metrics_display(backtest_metrics), md=6) |
|
|
]) |
|
|
else: |
|
|
metrics_components = dbc.Row(create_metrics_display( |
|
|
metrics, |
|
|
forecast_result['inference_time'] |
|
|
)) |
|
|
|
|
|
logger.info("β Forecast generation successful - returning chart and metrics") |
|
|
logger.info("CALLBACK: generate_forecast - EXIT (success)") |
|
|
logger.info("=" * 80) |
|
|
|
|
|
return fig, metrics_components, {'display': 'block'}, '' |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"β EXCEPTION in generate_forecast: {str(e)}", exc_info=True) |
|
|
logger.info("CALLBACK: generate_forecast - EXIT (exception)") |
|
|
logger.info("=" * 80) |
|
|
return create_empty_chart(f"Error: {str(e)}"), '', {'display': 'none'}, '' |
|
|
|
|
|
|
|
|
|
|
|
@app.server.route('/health') |
|
|
def health_check(): |
|
|
"""Health check endpoint for deployment monitoring""" |
|
|
status = { |
|
|
'status': 'healthy' if model_service.is_loaded else 'degraded', |
|
|
'model_loaded': model_service.is_loaded, |
|
|
'model_variant': model_service.model_variant, |
|
|
'device': model_service.device |
|
|
} |
|
|
return status |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
setup_directories() |
|
|
|
|
|
logger.info(f"Starting Chronos 2 Forecasting App") |
|
|
logger.info(f"Configuration: {CONFIG}") |
|
|
|
|
|
|
|
|
import os |
|
|
host = os.getenv('HOST', '127.0.0.1') |
|
|
port = int(os.getenv('PORT', '7860')) |
|
|
debug = os.getenv('DEBUG', 'True').lower() == 'true' |
|
|
|
|
|
|
|
|
app.run_server( |
|
|
host=host, |
|
|
port=port, |
|
|
debug=debug |
|
|
) |
|
|
|