from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse import uvicorn import os from predictor import SentenceExtractor # 保证导入规范文件名 `predictor.py` # 创建 FastAPI 应用 app = FastAPI() # 初始化 SentenceExtractor extractor = SentenceExtractor( eval_keywords_path="evaluation_keywords2.json", # 相对路径将被转换为绝对路径 model_path="distilled_model.onnx" ) @app.get("/") async def root(): return {"message": "API is running. Use POST /evaluate to upload files."} @app.get("/health") async def health(): try: # 暴露关键运行状态,便于部署环境自检 return JSONResponse(content={ "model_loaded": getattr(extractor, "model_loaded", False), "model_path_abs": getattr(extractor, "model_path_abs", None), "model_sha256": getattr(extractor, "model_sha256", None), "providers": getattr(extractor, "providers", None), "tokenizer_loaded": getattr(extractor, "tokenizer_loaded", None), "last_tokenizer_error": getattr(extractor, "last_tokenizer_error", None), "aggregation_mode": extractor.aggregation_mode, "min_sentence_char_len": extractor.min_sentence_char_len, "merge_leading_punct": extractor.merge_leading_punct, }) except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) @app.post("/evaluate") async def evaluate_file(file: UploadFile = File(...)): try: # 读取上传文件内容 content = await file.read() text = content.decode("utf-8", errors="ignore") # 调用 extractor 进行文本分析 result = extractor.extract(text) # 格式化输出结果 formatted_result = { "综合评分": result["comprehensive_grade"], "积极词语评价数": result["positive_word_count"], "消极词语评价数": result["negative_word_count"], "中性词语评价数": result["neutral_word_count"], "句子评分": [] } for i, item in enumerate(result["scored_sentences"], 1): source = item.get('source', '?') reason = item.get('reason') or item.get('last_tokenizer_error') suffix = f" ({source})" if source == 'rule' and reason: # 将回退原因直接拼接到可见文本,便于客户端看到具体错误 if len(reason) > 120: reason = reason[:120] + '...' suffix += f" - reason: {reason}" formatted_result["句子评分"].append({ f"句子{i}": f"{item['sentence']} - {item['grade']}{suffix}" }) # 附加调试信息便于客户端确认 formatted_result["_debug"] = result.get("debug", {}) return JSONResponse(content=formatted_result) except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) if __name__ == "__main__": port = int(os.getenv("PORT", 7860)) uvicorn.run(app, host="0.0.0.0", port=port)