Update app.py
Browse files
app.py
CHANGED
|
@@ -93,34 +93,57 @@ class VoiceMapper:
|
|
| 93 |
return default_voice
|
| 94 |
|
| 95 |
|
| 96 |
-
#
|
| 97 |
-
def
|
|
|
|
| 98 |
outputs,
|
| 99 |
model_kwargs,
|
| 100 |
is_encoder_decoder=False,
|
| 101 |
-
|
|
|
|
| 102 |
):
|
| 103 |
-
"""
|
| 104 |
-
#
|
|
|
|
|
|
|
| 105 |
if isinstance(outputs, dict):
|
| 106 |
-
|
|
|
|
| 107 |
else:
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
if "
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
[
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
import vibevoice.modular.modeling_vibevoice_streaming_inference as inference_module
|
| 123 |
-
inference_module._update_model_kwargs_for_generation = _update_model_kwargs_for_generation_fixed
|
| 124 |
|
| 125 |
|
| 126 |
# Check if CUDA is available
|
|
@@ -147,6 +170,9 @@ MODEL = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
|
|
| 147 |
attn_implementation="sdpa",
|
| 148 |
)
|
| 149 |
|
|
|
|
|
|
|
|
|
|
| 150 |
MODEL.eval()
|
| 151 |
MODEL.set_ddpm_inference_steps(num_steps=5)
|
| 152 |
|
|
|
|
| 93 |
return default_voice
|
| 94 |
|
| 95 |
|
| 96 |
+
# Patch the _update_model_kwargs_for_generation method
|
| 97 |
+
def patched_update_model_kwargs_for_generation(
|
| 98 |
+
self,
|
| 99 |
outputs,
|
| 100 |
model_kwargs,
|
| 101 |
is_encoder_decoder=False,
|
| 102 |
+
model_inputs=None,
|
| 103 |
+
num_new_tokens=1,
|
| 104 |
):
|
| 105 |
+
"""Patched version that handles both dict and object-like outputs"""
|
| 106 |
+
# Handle both dict and object-like outputs for cache
|
| 107 |
+
cache_name = "past_key_values"
|
| 108 |
+
|
| 109 |
if isinstance(outputs, dict):
|
| 110 |
+
# For dict outputs, use .get() method
|
| 111 |
+
model_kwargs[cache_name] = outputs.get(cache_name)
|
| 112 |
else:
|
| 113 |
+
# For object outputs, try to get the attribute
|
| 114 |
+
model_kwargs[cache_name] = getattr(outputs, cache_name, None)
|
| 115 |
+
|
| 116 |
+
if getattr(self, "config", None) is not None:
|
| 117 |
+
if "token_type_ids" in model_kwargs and model_kwargs["token_type_ids"] is not None:
|
| 118 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 119 |
+
model_kwargs["token_type_ids"] = torch.cat(
|
| 120 |
+
[token_type_ids, token_type_ids[:, -1:]], dim=-1
|
| 121 |
+
)
|
| 122 |
|
| 123 |
+
if not is_encoder_decoder:
|
| 124 |
+
# update attention mask
|
| 125 |
+
if "attention_mask" in model_kwargs and model_kwargs["attention_mask"] is not None:
|
| 126 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 127 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 128 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))],
|
| 129 |
+
dim=-1,
|
| 130 |
+
)
|
| 131 |
+
else:
|
| 132 |
+
# update decoder attention mask
|
| 133 |
+
if "decoder_attention_mask" in model_kwargs and model_kwargs["decoder_attention_mask"] is not None:
|
| 134 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
| 135 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
| 136 |
+
[
|
| 137 |
+
decoder_attention_mask,
|
| 138 |
+
decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1)),
|
| 139 |
+
],
|
| 140 |
+
dim=-1,
|
| 141 |
+
)
|
| 142 |
|
| 143 |
+
if model_inputs is not None and "cache_position" in model_inputs:
|
| 144 |
+
model_kwargs["cache_position"] = model_inputs["cache_position"][-1:] + num_new_tokens
|
| 145 |
|
| 146 |
+
return model_kwargs
|
|
|
|
|
|
|
| 147 |
|
| 148 |
|
| 149 |
# Check if CUDA is available
|
|
|
|
| 170 |
attn_implementation="sdpa",
|
| 171 |
)
|
| 172 |
|
| 173 |
+
# Apply the patch to the model instance
|
| 174 |
+
MODEL._update_model_kwargs_for_generation = patched_update_model_kwargs_for_generation.__get__(MODEL, type(MODEL))
|
| 175 |
+
|
| 176 |
MODEL.eval()
|
| 177 |
MODEL.set_ddpm_inference_steps(num_steps=5)
|
| 178 |
|