|
|
""" VibeVoice Streaming model configuration""" |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config |
|
|
|
|
|
from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceDiffusionHeadConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class VibeVoiceStreamingConfig(PretrainedConfig): |
|
|
model_type = "vibevoice_streaming" |
|
|
is_composition = True |
|
|
sub_configs = { |
|
|
"acoustic_tokenizer_config": VibeVoiceAcousticTokenizerConfig, |
|
|
"decoder_config": Qwen2Config, |
|
|
"diffusion_head_config": VibeVoiceDiffusionHeadConfig, |
|
|
} |
|
|
|
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
acoustic_tokenizer_config=None, |
|
|
decoder_config=None, |
|
|
diffusion_head_config=None, |
|
|
tts_backbone_num_hidden_layers=20, |
|
|
**kwargs |
|
|
): |
|
|
|
|
|
|
|
|
kwargs["_attn_implementation_autoset"] = False |
|
|
|
|
|
if acoustic_tokenizer_config is None: |
|
|
self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"]() |
|
|
elif isinstance(acoustic_tokenizer_config, dict): |
|
|
acoustic_tokenizer_config["model_type"] = "vibevoice_acoustic_tokenizer" |
|
|
self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"](**acoustic_tokenizer_config) |
|
|
elif isinstance(acoustic_tokenizer_config, VibeVoiceAcousticTokenizerConfig): |
|
|
|
|
|
self.acoustic_tokenizer_config = acoustic_tokenizer_config |
|
|
|
|
|
if decoder_config is None: |
|
|
self.decoder_config = self.sub_configs["decoder_config"]() |
|
|
elif isinstance(decoder_config, dict): |
|
|
|
|
|
|
|
|
if decoder_config.get("model_type", '') == "qwen2": |
|
|
self.decoder_config = Qwen2Config(**decoder_config) |
|
|
else: |
|
|
raise ValueError(f"Unsupported decoder model type: {decoder_config.get('model_type', '')}") |
|
|
elif isinstance(decoder_config, (Qwen2Config,)): |
|
|
|
|
|
self.decoder_config = decoder_config |
|
|
|
|
|
if diffusion_head_config is None: |
|
|
self.diffusion_head_config = self.sub_configs["diffusion_head_config"]() |
|
|
elif isinstance(diffusion_head_config, dict): |
|
|
diffusion_head_config["model_type"] = "vibevoice_diffusion_head" |
|
|
self.diffusion_head_config = self.sub_configs["diffusion_head_config"](**diffusion_head_config) |
|
|
elif isinstance(diffusion_head_config, VibeVoiceDiffusionHeadConfig): |
|
|
|
|
|
self.diffusion_head_config = diffusion_head_config |
|
|
|
|
|
|
|
|
self.acoustic_vae_dim = getattr(self.acoustic_tokenizer_config, 'vae_dim', 64) |
|
|
|
|
|
self.tts_backbone_num_hidden_layers = tts_backbone_num_hidden_layers |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
__all__ = [ |
|
|
"VibeVoiceStreamingConfig" |
|
|
] |