Spaces:
Build error
Build error
| import json | |
| import gradio as gr | |
| from PIL import Image | |
| import safetensors.torch | |
| import spaces | |
| import timm | |
| from timm.models import VisionTransformer | |
| import torch | |
| from torchvision.transforms import transforms | |
| from torchvision.transforms import InterpolationMode | |
| import torchvision.transforms.functional as TF | |
| torch.set_grad_enabled(False) | |
| class Fit(torch.nn.Module): | |
| def __init__( | |
| self, | |
| bounds: tuple[int, int] | int, | |
| interpolation = InterpolationMode.LANCZOS, | |
| grow: bool = True, | |
| pad: float | None = None | |
| ): | |
| super().__init__() | |
| self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds | |
| self.interpolation = interpolation | |
| self.grow = grow | |
| self.pad = pad | |
| def forward(self, img: Image) -> Image: | |
| wimg, himg = img.size | |
| hbound, wbound = self.bounds | |
| hscale = hbound / himg | |
| wscale = wbound / wimg | |
| if not self.grow: | |
| hscale = min(hscale, 1.0) | |
| wscale = min(wscale, 1.0) | |
| scale = min(hscale, wscale) | |
| if scale == 1.0: | |
| return img | |
| hnew = min(round(himg * scale), hbound) | |
| wnew = min(round(wimg * scale), wbound) | |
| img = TF.resize(img, (hnew, wnew), self.interpolation) | |
| if self.pad is None: | |
| return img | |
| hpad = hbound - hnew | |
| wpad = wbound - wnew | |
| tpad = hpad // 2 | |
| bpad = hpad - tpad | |
| lpad = wpad // 2 | |
| rpad = wpad - lpad | |
| return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) | |
| def __repr__(self) -> str: | |
| return ( | |
| f"{self.__class__.__name__}(" + | |
| f"bounds={self.bounds}, " + | |
| f"interpolation={self.interpolation.value}, " + | |
| f"grow={self.grow}, " + | |
| f"pad={self.pad})" | |
| ) | |
| class CompositeAlpha(torch.nn.Module): | |
| def __init__( | |
| self, | |
| background: tuple[float, float, float] | float, | |
| ): | |
| super().__init__() | |
| self.background = (background, background, background) if isinstance(background, float) else background | |
| self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) | |
| def forward(self, img: torch.Tensor) -> torch.Tensor: | |
| if img.shape[-3] == 3: | |
| return img | |
| alpha = img[..., 3, None, :, :] | |
| img[..., :3, :, :] *= alpha | |
| background = self.background.expand(-1, img.shape[-2], img.shape[-1]) | |
| if background.ndim == 1: | |
| background = background[:, None, None] | |
| elif background.ndim == 2: | |
| background = background[None, :, :] | |
| img[..., :3, :, :] += (1.0 - alpha) * background | |
| return img[..., :3, :, :] | |
| def __repr__(self) -> str: | |
| return ( | |
| f"{self.__class__.__name__}(" + | |
| f"background={self.background})" | |
| ) | |
| transform = transforms.Compose([ | |
| Fit((384, 384)), | |
| transforms.ToTensor(), | |
| CompositeAlpha(0.5), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
| transforms.CenterCrop((384, 384)), | |
| ]) | |
| model = timm.create_model( | |
| "vit_so400m_patch14_siglip_384.webli", | |
| pretrained=False, | |
| num_classes=9083, | |
| ) # type: VisionTransformer | |
| safetensors.torch.load_model(model, "JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors") | |
| model.eval() | |
| with open("tagger_tags.json", "r") as file: | |
| tags = json.load(file) # type: dict | |
| allowed_tags = list(tags.keys()) | |
| for idx, tag in enumerate(allowed_tags): | |
| allowed_tags[idx] = tag.replace("_", " ") | |
| sorted_tag_score = {} | |
| def run_classifier(image, threshold): | |
| global sorted_tag_score | |
| img = image.convert('RGBA') | |
| tensor = transform(img).unsqueeze(0) | |
| with torch.no_grad(): | |
| logits = model(tensor) | |
| probits = torch.nn.functional.sigmoid(logits[0]) | |
| values, indices = probits.topk(250) | |
| tag_score = dict() | |
| for i in range(indices.size(0)): | |
| tag_score[allowed_tags[indices[i]]] = values[i].item() | |
| sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) | |
| return create_tags(threshold) | |
| def create_tags(threshold): | |
| global sorted_tag_score | |
| filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} | |
| text_no_impl = ", ".join(filtered_tag_score.keys()) | |
| return text_no_impl, filtered_tag_score | |
| with gr.Blocks(css=".output-class { display: none; }") as demo: | |
| gr.Markdown(""" | |
| ## Joint Tagger Project: PILOT Demo | |
| This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. | |
| This tagger is the result of joint efforts between members of the RedRocket team. Special thanks to Minotoro at frosting.ai for providing the compute power for this project. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False) | |
| threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") | |
| with gr.Column(): | |
| tag_string = gr.Textbox(label="Tag String") | |
| label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) | |
| image_input.upload( | |
| fn=run_classifier, | |
| inputs=[image_input, threshold_slider], | |
| outputs=[tag_string, label_box] | |
| ) | |
| threshold_slider.input( | |
| fn=create_tags, | |
| inputs=[threshold_slider], | |
| outputs=[tag_string, label_box] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |