Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import os | |
| import shutil | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from PIL import Image | |
| from Amodal3R.pipelines import Amodal3RImageTo3DPipeline | |
| from Amodal3R.representations import Gaussian, MeshExtractResult | |
| from Amodal3R.utils import render_utils, postprocessing_utils | |
| from segment_anything import sam_model_registry, SamPredictor | |
| from huggingface_hub import hf_hub_download | |
| import cv2 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| os.environ['MASTER_ADDR'] = 'localhost' | |
| os.environ['MASTER_PORT'] = '12355' | |
| def start_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| shutil.rmtree(user_dir) | |
| def change_message(): | |
| return "Please wait for a few seconds after uploading the image." | |
| def reset_image(predictor, img): | |
| img = np.array(img) | |
| predictor.set_image(img) | |
| original_img = img.copy() | |
| return predictor, original_img, "The models are ready.", [], [], [], original_img | |
| def button_clickable(selected_points): | |
| if len(selected_points) > 0: | |
| return gr.Button.update(interactive=True) | |
| else: | |
| return gr.Button.update(interactive=False) | |
| def run_sam(img, predictor, selected_points): | |
| if len(selected_points) == 0: | |
| return np.zeros(img.shape[:2], dtype=np.uint8) | |
| input_points = [p for p in selected_points] | |
| input_labels = [1 for _ in range(len(selected_points))] | |
| masks, _, _ = predictor.predict( | |
| point_coords=np.array(input_points), | |
| point_labels=np.array(input_labels), | |
| multimask_output=False, | |
| ) | |
| best_mask = masks[0].astype(np.uint8) | |
| # dilate | |
| if len(selected_points) > 1: | |
| kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) | |
| best_mask = cv2.dilate(best_mask, kernel, iterations=1) | |
| best_mask = cv2.erode(best_mask, kernel, iterations=1) | |
| return best_mask | |
| def image_to_3d( | |
| image: np.ndarray, | |
| mask: np.ndarray, | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| erode_kernel_size: int, | |
| req: gr.Request, | |
| ) -> Tuple[dict, str]: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| outputs = pipeline.run_multi_image( | |
| [image], | |
| [mask], | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| mode="stochastic", | |
| erode_kernel_size=erode_kernel_size, | |
| ) | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| video_path = os.path.join(user_dir, 'sample.mp4') | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
| torch.cuda.empty_cache() | |
| return state, video_path | |
| def extract_glb( | |
| state: dict, | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request, | |
| ) -> tuple: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, mesh = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| return glb_path, glb_path | |
| def extract_gaussian(state: dict, req: gr.Request) -> tuple: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| gs, _ = unpack_state(state) | |
| gaussian_path = os.path.join(user_dir, 'sample.ply') | |
| gs.save_ply(gaussian_path) | |
| torch.cuda.empty_cache() | |
| return gaussian_path, gaussian_path | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| } | |
| def unpack_state(state: dict) -> tuple: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh | |
| def get_sam_predictor(): | |
| sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth") | |
| model_type = "vit_h" | |
| sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
| sam_predictor = SamPredictor(sam) | |
| return sam_predictor | |
| def draw_points_on_image(image, point): | |
| image_with_points = image.copy() | |
| x, y = point | |
| color = (255, 0, 0) | |
| cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1) | |
| return image_with_points | |
| def see_point(image, x, y): | |
| updated_image = draw_points_on_image(image, [x,y]) | |
| return updated_image | |
| def add_point(x, y, visible_points): | |
| if [x, y] not in visible_points: | |
| visible_points.append([x, y]) | |
| return visible_points | |
| def delete_point(visible_points): | |
| visible_points.pop() | |
| return visible_points | |
| def clear_all_points(image): | |
| updated_image = image.copy() | |
| return updated_image | |
| def see_visible_points(image, visible_points): | |
| updated_image = image.copy() | |
| for p in visible_points: | |
| cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1) | |
| return updated_image | |
| def see_occlusion_points(image, occlusion_points): | |
| updated_image = image.copy() | |
| for p in occlusion_points: | |
| cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(0, 255, 0), thickness=-1) | |
| return updated_image | |
| def update_all_points(points): | |
| text = f"Points: {points}" | |
| dropdown_choices = [f"({p[0]}, {p[1]})" for p in points] | |
| return text, gr.Dropdown(show_label=False, choices=dropdown_choices, value=None, interactive=True) | |
| def delete_selected(image, visible_points, occlusion_points, occlusion_mask_list, selected_value, point_type): | |
| if point_type == "visibility": | |
| try: | |
| selected_index = [f"({p[0]}, {p[1]})" for p in visible_points].index(selected_value) | |
| except ValueError: | |
| selected_index = None | |
| if selected_index is not None and 0 <= selected_index < len(visible_points): | |
| visible_points.pop(selected_index) | |
| else: | |
| try: | |
| selected_index = [f"({p[0]}, {p[1]})" for p in occlusion_points].index(selected_value) | |
| except ValueError: | |
| selected_index = None | |
| if selected_index is not None and 0 <= selected_index < len(occlusion_points): | |
| occlusion_points.pop(selected_index) | |
| occlusion_mask_list.pop(selected_index) | |
| updated_image = image.copy() | |
| updated_image = see_visible_points(updated_image, visible_points) | |
| updated_image = see_occlusion_points(updated_image, occlusion_points) | |
| if point_type == "visibility": | |
| updated_text, dropdown = update_all_points(visible_points) | |
| else: | |
| updated_text, dropdown = update_all_points(occlusion_points) | |
| return updated_image, visible_points, occlusion_points, updated_text, dropdown | |
| def add_current_mask(visibility_mask, visibilty_mask_list, point_type): | |
| if point_type == "visibility": | |
| if len(visibilty_mask_list) > 0: | |
| if np.array_equal(visibility_mask, visibilty_mask_list[-1]): | |
| return visibilty_mask_list | |
| visibilty_mask_list.append(visibility_mask) | |
| return visibilty_mask_list | |
| else: # the occlusion mask will be automatically added, so do nothing here | |
| return visibilty_mask_list | |
| def apply_mask_overlay(image, mask, color=(255, 0, 0)): | |
| img_arr = image | |
| overlay = img_arr.copy() | |
| gray_color = np.array([200, 200, 200], dtype=np.uint8) | |
| non_mask = mask == 0 | |
| overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8) | |
| contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| cv2.drawContours(overlay, contours, -1, color, 2) | |
| return overlay | |
| def vis_mask(image, mask_list): | |
| updated_image = image.copy() | |
| combined_mask = np.zeros_like(updated_image[:, :, 0]) | |
| for mask in mask_list: | |
| combined_mask = cv2.bitwise_or(combined_mask, mask) | |
| updated_image = apply_mask_overlay(updated_image, combined_mask) | |
| return updated_image | |
| def segment_and_overlay(image, points, sam_predictor, mask_list, point_type): | |
| if point_type == "visibility": | |
| visible_mask = run_sam(image, sam_predictor, points) | |
| for mask in mask_list: | |
| visible_mask = cv2.bitwise_or(visible_mask, mask) | |
| overlaid = apply_mask_overlay(image, visible_mask * 255) | |
| return overlaid, visible_mask, mask_list | |
| else: | |
| combined_occlusion_mask = np.zeros_like(image[:, :, 0]) | |
| mask_list = [] | |
| if len(points) != 0: | |
| for point in points: | |
| mask = run_sam(image, sam_predictor, [point]) | |
| mask_list.append(mask) | |
| combined_occlusion_mask = cv2.bitwise_or(combined_occlusion_mask, mask) | |
| overlaid = apply_mask_overlay(image, combined_occlusion_mask * 255, color=(0, 255, 0)) | |
| return overlaid, combined_occlusion_mask, mask_list | |
| def delete_mask(visibility_mask_list, occlusion_mask_list, occlusion_points_state, point_type): | |
| if point_type == "visibility": | |
| if len(visibility_mask_list) > 0: | |
| visibility_mask_list.pop() | |
| else: | |
| if len(occlusion_mask_list) > 0: | |
| occlusion_mask_list.pop() | |
| occlusion_points_state.pop() | |
| return visibility_mask_list, occlusion_mask_list, occlusion_points_state | |
| def check_combined_mask(image, visibility_mask, visibility_mask_list, occlusion_mask_list, scale=0.68): | |
| if visibility_mask.sum() == 0: | |
| return np.zeros_like(image), np.zeros_like(image[:, :, 0]) | |
| updated_image = image.copy() | |
| combined_mask = np.zeros_like(updated_image[:, :, 0]) | |
| occluded_mask = np.zeros_like(updated_image[:, :, 0]) | |
| binary_visibility_masks = [(m > 0).astype(np.uint8) for m in visibility_mask_list] | |
| combined_mask = np.zeros_like(binary_visibility_masks[0]) if binary_visibility_masks else (visibility_mask > 0).astype(np.uint8) | |
| for m in binary_visibility_masks: | |
| combined_mask = cv2.bitwise_or(combined_mask, m) | |
| if len(binary_visibility_masks) > 1: | |
| kernel = np.ones((5, 5), np.uint8) | |
| combined_mask = cv2.dilate(combined_mask, kernel, iterations=1) | |
| binary_occlusion_masks = [(m > 0).astype(np.uint8) for m in occlusion_mask_list] | |
| occluded_mask = np.zeros_like(binary_occlusion_masks[0]) if binary_occlusion_masks else np.zeros_like(combined_mask) | |
| for m in binary_occlusion_masks: | |
| occluded_mask = cv2.bitwise_or(occluded_mask, m) | |
| kernel_small = np.ones((3, 3), np.uint8) | |
| if len(binary_occlusion_masks) > 0: | |
| dilated = cv2.dilate(combined_mask, kernel_small, iterations=1) | |
| boundary_mask = dilated - combined_mask | |
| occluded_mask = cv2.bitwise_or(occluded_mask, boundary_mask) | |
| occluded_mask = (occluded_mask > 0).astype(np.uint8) | |
| occluded_mask = cv2.dilate(occluded_mask, kernel_small, iterations=1) | |
| occluded_mask = (occluded_mask > 0).astype(np.uint8) | |
| else: | |
| occluded_mask = 1 - combined_mask | |
| combined_mask[occluded_mask == 1] = 0 | |
| occluded_mask = (1-occluded_mask) * 255 | |
| masked_img = updated_image * combined_mask[:, :, None] | |
| occluded_mask[combined_mask == 1] = 127 | |
| x, y, w, h = cv2.boundingRect(combined_mask.astype(np.uint8)) | |
| ori_h, ori_w = masked_img.shape[:2] | |
| target_size = 512 | |
| scale_factor = target_size / max(w, h) | |
| final_scale = scale_factor * scale | |
| new_w = int(round(ori_w * final_scale)) | |
| new_h = int(round(ori_h * final_scale)) | |
| resized_occluded_mask = cv2.resize(occluded_mask.astype(np.uint8), (new_w, new_h), interpolation=cv2.INTER_NEAREST) | |
| resized_img = cv2.resize(masked_img, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4) | |
| final_img = np.zeros((target_size, target_size, 3), dtype=updated_image.dtype) | |
| final_occluded_mask = np.ones((target_size, target_size), dtype=np.uint8) * 255 | |
| new_x = int(round(x * final_scale)) | |
| new_y = int(round(y * final_scale)) | |
| new_w_box = int(round(w * final_scale)) | |
| new_h_box = int(round(h * final_scale)) | |
| new_cx = new_x + new_w_box // 2 | |
| new_cy = new_y + new_h_box // 2 | |
| final_cx, final_cy = target_size // 2, target_size // 2 | |
| x_offset = final_cx - new_cx | |
| y_offset = final_cy - new_cy | |
| final_x_start = max(0, x_offset) | |
| final_y_start = max(0, y_offset) | |
| final_x_end = min(target_size, x_offset + new_w) | |
| final_y_end = min(target_size, y_offset + new_h) | |
| img_x_start = max(0, -x_offset) | |
| img_y_start = max(0, -y_offset) | |
| img_x_end = min(new_w, target_size - x_offset) | |
| img_y_end = min(new_h, target_size - y_offset) | |
| final_img[final_y_start:final_y_end, final_x_start:final_x_end] = resized_img[img_y_start:img_y_end, img_x_start:img_x_end] | |
| final_occluded_mask[final_y_start:final_y_end, final_x_start:final_x_end] = resized_occluded_mask[img_y_start:img_y_end, img_x_start:img_x_end] | |
| return final_img, final_occluded_mask | |
| def get_point(img, point_type, visible_points_state, occlusion_points_state, evt: gr.SelectData): | |
| updated_img = np.array(img).copy() | |
| if point_type == "visibility": | |
| visible_points_state = add_point(evt.index[0], evt.index[1], visible_points_state) | |
| else: | |
| occlusion_points_state = add_point(evt.index[0], evt.index[1], occlusion_points_state) | |
| updated_img = see_visible_points(updated_img, visible_points_state) | |
| updated_img = see_occlusion_points(updated_img, occlusion_points_state) | |
| return updated_img, visible_points_state, occlusion_points_state | |
| def change_point_type(point_type, visible_points_state, occlusion_points_state): | |
| if point_type == "visibility": | |
| text = f"Points: {visible_points_state}" | |
| dropdown_choices = [f"({p[0]}, {p[1]})" for p in visible_points_state] | |
| else: | |
| text = f"Points: {occlusion_points_state}" | |
| dropdown_choices = [f"({p[0]}, {p[1]})" for p in occlusion_points_state] | |
| return text, gr.Dropdown(show_label=False, choices=dropdown_choices, value=None, interactive=True) | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| """ | |
| Get the random seed. | |
| """ | |
| return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| ## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/) | |
| """) | |
| predictor = gr.State(value=get_sam_predictor()) | |
| visible_points_state = gr.State(value=[]) | |
| occlusion_points_state = gr.State(value=[]) | |
| occlusion_mask = gr.State(value=None) | |
| occlusion_mask_list = gr.State(value=[]) | |
| original_image = gr.State(value=None) | |
| visibility_mask = gr.State(value=None) | |
| visibility_mask_list = gr.State(value=[]) | |
| occluded_mask = gr.State(value=None) | |
| output_buf = gr.State() | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| ### Step 1 - Generate Visibility and Occlusion Mask. | |
| * Please click "Load Example Image" when using the provided example images (bottom). | |
| * Please wait for a few seconds after uploading the image. Segment Anything is getting ready. | |
| * **Click to add the point prompts** to indicate the target object (multiple points supported) and occluders (one point for an occluder for better usability). | |
| * "Add mask", current mask will be saved if the input needs to be added sequentially. | |
| * The scale of target object can be adjusted for better reconstruction, we suggest 0.4 to 0.7 for most cases. | |
| """) | |
| with gr.Row(): | |
| input_image = gr.Image(interactive=True, type='pil', label='Input Occlusion Image', show_label=True, sources="upload", height=300) | |
| input_with_prompt = gr.Image(type="numpy", label='Input with Prompt', interactive=False, height=300) | |
| with gr.Row(): | |
| apply_example_btn = gr.Button("Load Example Image") | |
| message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message") | |
| with gr.Row(): | |
| point_type = gr.Radio(["visibility", "occlusion"], label="Point Prompt Type", value="visibility") | |
| with gr.Row(): | |
| with gr.Column(): | |
| points_text = gr.Textbox(show_label=False, interactive=False) | |
| with gr.Column(): | |
| points_dropdown = gr.Dropdown(show_label=False, choices=[], value=None, interactive=True) | |
| delete_button = gr.Button("Delete Selected Point") | |
| with gr.Row(): | |
| with gr.Column(): | |
| render_mask = gr.Image(label='Render Mask', interactive=False, height=300) | |
| with gr.Row(): | |
| add_mask = gr.Button("Add Mask") | |
| undo_mask = gr.Button("Undo Last Mask") | |
| with gr.Column(): | |
| vis_input = gr.Image(label='Visible Input', interactive=False, height=300) | |
| with gr.Row(): | |
| zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.68, step=0.1) | |
| with gr.Row(): | |
| check_visible_input = gr.Button("Generate Occluded Input") | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| ### Step 2 - 3D Amodal Reconstruction. (Thanks to [TRELLIS](https://huggingface.co/spaces/JeffreyXiang/TRELLIS) for the 3D rendering component!) | |
| * Different random seeds can be tried in "Generation Settings", if you think the results are not ideal. | |
| * The boundary of the segmentation may not be accurate, so here we provide the option to erode the visible area (try 0, 3 or 5). | |
| * If the reconstructed 3D asset is satisfactory, interactive GLB file can be extracted (may look dull due to the absence of light source) and downloaded. | |
| """) | |
| with gr.Row(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| with gr.Row(): | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=False) | |
| with gr.Column(): | |
| erode_kernel_size = gr.Slider(0, 5, label="Erode Kernel Size", value=3, step=1) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| with gr.Row(): | |
| generate_btn = gr.Button("Amodal 3D Reconstruction") | |
| with gr.Row(): | |
| model_output = gr.Model3D(label="Extracted GLB", pan_speed=0.5, height=300, clear_color=(0.9,0.9,0.9,1)) | |
| with gr.Row(): | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| with gr.Row(): | |
| extract_glb_btn = gr.Button("Extract GLB") | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| with gr.Row(): | |
| examples = gr.Examples( | |
| examples=[ | |
| f'assets/example_image/{image}' | |
| for image in os.listdir("assets/example_image") | |
| ], | |
| inputs=[input_image], | |
| fn=lambda x: x, | |
| outputs=[input_image], | |
| run_on_click=True, | |
| examples_per_page=12, | |
| ) | |
| # # Handlers | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| input_image.upload( | |
| change_message, | |
| [], | |
| [message] | |
| ).then( | |
| reset_image, | |
| [predictor, input_image], | |
| [predictor, original_image, message, visible_points_state, occlusion_points_state, occlusion_mask_list, input_with_prompt], | |
| ) | |
| apply_example_btn.click( | |
| change_message, | |
| [], | |
| [message] | |
| ).then( | |
| reset_image, | |
| inputs=[predictor, input_image], | |
| outputs=[predictor, original_image, message, visible_points_state, occlusion_points_state, occlusion_mask_list, input_with_prompt] | |
| ) | |
| input_image.select( | |
| get_point, | |
| inputs=[input_image, point_type, visible_points_state, occlusion_points_state], | |
| outputs=[input_with_prompt, visible_points_state, occlusion_points_state] | |
| ) | |
| point_type.change( | |
| change_point_type, | |
| inputs=[point_type, visible_points_state, occlusion_points_state], | |
| outputs=[points_text, points_dropdown] | |
| ) | |
| visible_points_state.change( | |
| update_all_points, | |
| inputs=[visible_points_state], | |
| outputs=[points_text, points_dropdown] | |
| ).then( | |
| segment_and_overlay, | |
| inputs=[original_image, visible_points_state, predictor, visibility_mask_list, point_type], | |
| outputs=[render_mask, visibility_mask, visibility_mask_list] | |
| ).then( | |
| check_combined_mask, | |
| inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale], | |
| outputs=[vis_input, occluded_mask] | |
| ) | |
| occlusion_points_state.change( | |
| update_all_points, | |
| inputs=[occlusion_points_state], | |
| outputs=[points_text, points_dropdown] | |
| ).then( | |
| segment_and_overlay, | |
| inputs=[original_image, occlusion_points_state, predictor, occlusion_mask_list, point_type], | |
| outputs=[render_mask, occlusion_mask, occlusion_mask_list] | |
| ).then( | |
| check_combined_mask, | |
| inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale], | |
| outputs=[vis_input, occluded_mask] | |
| ) | |
| delete_button.click( | |
| delete_selected, | |
| inputs=[original_image, visible_points_state, occlusion_points_state, occlusion_mask_list, points_dropdown, point_type], | |
| outputs=[input_with_prompt, visible_points_state, occlusion_points_state, points_text, points_dropdown] | |
| ) | |
| add_mask.click( | |
| add_current_mask, | |
| inputs=[visibility_mask, visibility_mask_list, point_type], | |
| outputs=[visibility_mask_list] | |
| ) | |
| undo_mask.click( | |
| delete_mask, | |
| inputs=[visibility_mask_list, occlusion_mask_list, occlusion_points_state, point_type], | |
| outputs=[visibility_mask_list, occlusion_mask_list, occlusion_points_state] | |
| ) | |
| check_visible_input.click( | |
| check_combined_mask, | |
| inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale], | |
| outputs=[vis_input, occluded_mask] | |
| ) | |
| # 3D Amodal Reconstruction | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| ).then( | |
| image_to_3d, | |
| inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, erode_kernel_size], | |
| outputs=[output_buf, video_output], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_glb], | |
| ) | |
| model_output.clear( | |
| lambda: gr.Button(interactive=False), | |
| outputs=[download_glb], | |
| ) | |
| if __name__ == "__main__": | |
| pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R") | |
| pipeline.cuda() | |
| try: | |
| pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
| except: | |
| pass | |
| demo.launch() |