Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import cv2 | |
| from tqdm import tqdm | |
| def extract_frames(filename,num_frames,model,image_size=(380,380)): | |
| cap_org = cv2.VideoCapture(filename) | |
| if not cap_org.isOpened(): | |
| print(f'Cannot open: {filename}') | |
| # sys.exit() | |
| return [] | |
| croppedfaces=[] | |
| idx_list=[] | |
| frame_count_org = int(cap_org.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_idxs = np.linspace(0, frame_count_org - 1, num_frames, endpoint=True, dtype=int) | |
| for cnt_frame in range(frame_count_org): | |
| ret_org, frame_org = cap_org.read() | |
| height,width=frame_org.shape[:-1] | |
| if not ret_org: | |
| tqdm.write('Frame read {} Error! : {}'.format(cnt_frame,os.path.basename(filename))) | |
| break | |
| if cnt_frame not in frame_idxs: | |
| continue | |
| frame = cv2.cvtColor(frame_org, cv2.COLOR_BGR2RGB) | |
| faces = model.predict_jsons(frame) | |
| try: | |
| if len(faces)==0: | |
| tqdm.write('No faces in {}:{}'.format(cnt_frame,os.path.basename(filename))) | |
| continue | |
| size_list=[] | |
| croppedfaces_temp=[] | |
| idx_list_temp=[] | |
| for face_idx in range(len(faces)): | |
| x0,y0,x1,y1=faces[face_idx]['bbox'] | |
| bbox=np.array([[x0,y0],[x1,y1]]) | |
| croppedfaces_temp.append(cv2.resize(crop_face(frame,None,bbox,False,crop_by_bbox=True,only_img=True,phase='test'),dsize=image_size).transpose((2,0,1))) | |
| idx_list_temp.append(cnt_frame) | |
| size_list.append((x1-x0)*(y1-y0)) | |
| max_size=max(size_list) | |
| croppedfaces_temp=[f for face_idx,f in enumerate(croppedfaces_temp) if size_list[face_idx]>=max_size/2] | |
| idx_list_temp=[f for face_idx,f in enumerate(idx_list_temp) if size_list[face_idx]>=max_size/2] | |
| croppedfaces+=croppedfaces_temp | |
| idx_list+=idx_list_temp | |
| except Exception as e: | |
| print(f'error in {cnt_frame}:{filename}') | |
| print(e) | |
| continue | |
| cap_org.release() | |
| return croppedfaces,idx_list | |
| def extract_face(frame,model,image_size=(380,380)): | |
| faces = model.predict_jsons(frame) | |
| if len(faces[0]['bbox'])==0: | |
| return [] | |
| croppedfaces=[] | |
| for face_idx in range(len(faces)): | |
| x0,y0,x1,y1=faces[face_idx]['bbox'] | |
| bbox=np.array([[x0,y0],[x1,y1]]) | |
| croppedfaces.append(cv2.resize(crop_face(frame,None,bbox,False,crop_by_bbox=True,only_img=True,phase='test'),dsize=image_size).transpose((2,0,1))) | |
| return croppedfaces | |
| def crop_face(img,landmark=None,bbox=None,margin=False,crop_by_bbox=True,abs_coord=False,only_img=False,phase='train'): | |
| assert phase in ['train','val','test'] | |
| #crop face------------------------------------------ | |
| H,W=len(img),len(img[0]) | |
| assert landmark is not None or bbox is not None | |
| H,W=len(img),len(img[0]) | |
| if crop_by_bbox: | |
| x0,y0=bbox[0] | |
| x1,y1=bbox[1] | |
| w=x1-x0 | |
| h=y1-y0 | |
| w0_margin=w/4#0#np.random.rand()*(w/8) | |
| w1_margin=w/4 | |
| h0_margin=h/4#0#np.random.rand()*(h/5) | |
| h1_margin=h/4 | |
| else: | |
| x0,y0=landmark[:68,0].min(),landmark[:68,1].min() | |
| x1,y1=landmark[:68,0].max(),landmark[:68,1].max() | |
| w=x1-x0 | |
| h=y1-y0 | |
| w0_margin=w/8#0#np.random.rand()*(w/8) | |
| w1_margin=w/8 | |
| h0_margin=h/2#0#np.random.rand()*(h/5) | |
| h1_margin=h/5 | |
| if margin: | |
| w0_margin*=4 | |
| w1_margin*=4 | |
| h0_margin*=2 | |
| h1_margin*=2 | |
| elif phase=='train': | |
| w0_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() | |
| w1_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() | |
| h0_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() | |
| h1_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() | |
| else: | |
| w0_margin*=0.5 | |
| w1_margin*=0.5 | |
| h0_margin*=0.5 | |
| h1_margin*=0.5 | |
| y0_new=max(0,int(y0-h0_margin)) | |
| y1_new=min(H,int(y1+h1_margin)+1) | |
| x0_new=max(0,int(x0-w0_margin)) | |
| x1_new=min(W,int(x1+w1_margin)+1) | |
| img_cropped=img[y0_new:y1_new,x0_new:x1_new] | |
| if landmark is not None: | |
| landmark_cropped=np.zeros_like(landmark) | |
| for i,(p,q) in enumerate(landmark): | |
| landmark_cropped[i]=[p-x0_new,q-y0_new] | |
| else: | |
| landmark_cropped=None | |
| if bbox is not None: | |
| bbox_cropped=np.zeros_like(bbox) | |
| for i,(p,q) in enumerate(bbox): | |
| bbox_cropped[i]=[p-x0_new,q-y0_new] | |
| else: | |
| bbox_cropped=None | |
| if only_img: | |
| return img_cropped | |
| if abs_coord: | |
| return img_cropped,landmark_cropped,bbox_cropped,(y0-y0_new,x0-x0_new,y1_new-y1,x1_new-x1),y0_new,y1_new,x0_new,x1_new | |
| else: | |
| return img_cropped,landmark_cropped,bbox_cropped,(y0-y0_new,x0-x0_new,y1_new-y1,x1_new-x1) |