Commit
·
1579b70
1
Parent(s):
7cd255e
fixing
Browse files- routes/summarize.py +2 -5
- services/extractor.py +16 -15
- services/model_loader.py +11 -0
- services/summarizer.py +1 -1
routes/summarize.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from fastapi import APIRouter, UploadFile, File
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
-
from services.extractor import
|
| 4 |
from services.summarizer import get_scores, get_selected_indices, save_summary_video
|
| 5 |
from uuid import uuid4
|
| 6 |
import time
|
|
@@ -25,11 +25,8 @@ def summarize_video(video: UploadFile = File(...)):
|
|
| 25 |
with open(filepath, "wb") as f:
|
| 26 |
f.write(video.file.read())
|
| 27 |
|
| 28 |
-
print("\n-----------> Extracting Frames ....")
|
| 29 |
-
frames, picks = extract_frames(filepath)
|
| 30 |
-
|
| 31 |
print("\n-----------> Extracting Features ....")
|
| 32 |
-
features = extract_features(
|
| 33 |
|
| 34 |
print("\n-----------> Getting Scores ....")
|
| 35 |
scores = get_scores(features)
|
|
|
|
| 1 |
from fastapi import APIRouter, UploadFile, File
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
+
from services.extractor import extract_features
|
| 4 |
from services.summarizer import get_scores, get_selected_indices, save_summary_video
|
| 5 |
from uuid import uuid4
|
| 6 |
import time
|
|
|
|
| 25 |
with open(filepath, "wb") as f:
|
| 26 |
f.write(video.file.read())
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
print("\n-----------> Extracting Features ....")
|
| 29 |
+
features, picks = extract_features(filepath)
|
| 30 |
|
| 31 |
print("\n-----------> Getting Scores ....")
|
| 32 |
scores = get_scores(features)
|
services/extractor.py
CHANGED
|
@@ -5,6 +5,7 @@ from PIL import Image
|
|
| 5 |
from torchvision import models, transforms
|
| 6 |
from config import DEVICE, FRAME_RATE
|
| 7 |
from tqdm import tqdm
|
|
|
|
| 8 |
|
| 9 |
# Load GoogLeNet once
|
| 10 |
from torchvision.models import GoogLeNet_Weights
|
|
@@ -31,6 +32,7 @@ feature_extractor = torch.nn.Sequential(
|
|
| 31 |
googlenet.avgpool,
|
| 32 |
torch.nn.Flatten()
|
| 33 |
)
|
|
|
|
| 34 |
|
| 35 |
transform = transforms.Compose([
|
| 36 |
transforms.Resize((224, 224)),
|
|
@@ -41,33 +43,32 @@ transform = transforms.Compose([
|
|
| 41 |
)
|
| 42 |
])
|
| 43 |
|
| 44 |
-
def
|
| 45 |
cap = cv2.VideoCapture(video_path)
|
| 46 |
frames = []
|
| 47 |
indices = []
|
| 48 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 49 |
# total_frames = 300 # TEMP
|
| 50 |
print(f"Total frames in video: {total_frames}")
|
| 51 |
-
print(f"Extracting frames at every {FRAME_RATE} frames...")
|
| 52 |
|
| 53 |
-
for idx in tqdm(range(
|
| 54 |
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 55 |
ret, frame = cap.read()
|
| 56 |
if not ret:
|
| 57 |
break
|
| 58 |
-
frames.append(Image.fromarray(frame))
|
| 59 |
-
indices.append(idx)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
cap.release()
|
| 65 |
-
return frames, indices
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
print("Features
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
return features
|
|
|
|
| 5 |
from torchvision import models, transforms
|
| 6 |
from config import DEVICE, FRAME_RATE
|
| 7 |
from tqdm import tqdm
|
| 8 |
+
from services.model_loader import batch_inference
|
| 9 |
|
| 10 |
# Load GoogLeNet once
|
| 11 |
from torchvision.models import GoogLeNet_Weights
|
|
|
|
| 32 |
googlenet.avgpool,
|
| 33 |
torch.nn.Flatten()
|
| 34 |
)
|
| 35 |
+
feature_extractor = feature_extractor.eval()
|
| 36 |
|
| 37 |
transform = transforms.Compose([
|
| 38 |
transforms.Resize((224, 224)),
|
|
|
|
| 43 |
)
|
| 44 |
])
|
| 45 |
|
| 46 |
+
def extract_features(video_path):
|
| 47 |
cap = cv2.VideoCapture(video_path)
|
| 48 |
frames = []
|
| 49 |
indices = []
|
| 50 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 51 |
# total_frames = 300 # TEMP
|
| 52 |
print(f"Total frames in video: {total_frames}")
|
|
|
|
| 53 |
|
| 54 |
+
for idx in tqdm(range(total_frames)):
|
| 55 |
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 56 |
ret, frame = cap.read()
|
| 57 |
if not ret:
|
| 58 |
break
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# process frame
|
| 61 |
+
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 62 |
+
frame = transform(frame)
|
| 63 |
+
|
| 64 |
+
frames.append(frame)
|
| 65 |
+
indices.append(idx)
|
| 66 |
|
| 67 |
cap.release()
|
|
|
|
| 68 |
|
| 69 |
+
frames = torch.stack(frames).to(DEVICE)
|
| 70 |
+
print("Features before GoogleNet extraction:", frames.shape)
|
| 71 |
+
frames = batch_inference(model=feature_extractor, input=frames, batch_size=32)
|
| 72 |
+
print("Features after GoogleNet extraction:", frames.shape)
|
| 73 |
+
|
| 74 |
+
return frames, indices
|
|
|
services/model_loader.py
CHANGED
|
@@ -4,6 +4,7 @@ import os
|
|
| 4 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
|
| 5 |
from layers.summarizer import PGL_SUM
|
| 6 |
from config import DEVICE
|
|
|
|
| 7 |
|
| 8 |
def load_model(weights_path):
|
| 9 |
model = PGL_SUM(
|
|
@@ -17,3 +18,13 @@ def load_model(weights_path):
|
|
| 17 |
model.load_state_dict(torch.load(weights_path, map_location=DEVICE))
|
| 18 |
model.eval()
|
| 19 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
|
| 5 |
from layers.summarizer import PGL_SUM
|
| 6 |
from config import DEVICE
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
|
| 9 |
def load_model(weights_path):
|
| 10 |
model = PGL_SUM(
|
|
|
|
| 18 |
model.load_state_dict(torch.load(weights_path, map_location=DEVICE))
|
| 19 |
model.eval()
|
| 20 |
return model
|
| 21 |
+
|
| 22 |
+
def batch_inference(model, input, batch_size=128):
|
| 23 |
+
model.eval()
|
| 24 |
+
output = []
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
for i in tqdm(range(0, input.size(0), batch_size)):
|
| 27 |
+
batch = input[i:i + batch_size].to(DEVICE)
|
| 28 |
+
out = model(batch)
|
| 29 |
+
output.append(out.cpu())
|
| 30 |
+
return torch.cat(output, dim=0)
|
services/summarizer.py
CHANGED
|
@@ -60,7 +60,7 @@ def save_summary_video(video_path, selected_indices, output_path, fps=15):
|
|
| 60 |
out.release()
|
| 61 |
|
| 62 |
print("Fixing the video with ffmpeg")
|
| 63 |
-
|
| 64 |
|
| 65 |
def fix_video_with_ffmpeg(path):
|
| 66 |
temp_path = path + ".fixed.mp4"
|
|
|
|
| 60 |
out.release()
|
| 61 |
|
| 62 |
print("Fixing the video with ffmpeg")
|
| 63 |
+
fix_video_with_ffmpeg(output_path)
|
| 64 |
|
| 65 |
def fix_video_with_ffmpeg(path):
|
| 66 |
temp_path = path + ".fixed.mp4"
|