Spaces:
Runtime error
Runtime error
Commit
·
bb7b8fd
1
Parent(s):
e85e2ac
v1
Browse files- requirements.txt +1 -1
- revelado/revelado.py +17 -0
requirements.txt
CHANGED
|
@@ -7,4 +7,4 @@ tensorflow==2.11.0
|
|
| 7 |
transformers==4.30.2
|
| 8 |
matplotlib
|
| 9 |
numpy
|
| 10 |
-
tf-keras-vis
|
|
|
|
| 7 |
transformers==4.30.2
|
| 8 |
matplotlib
|
| 9 |
numpy
|
| 10 |
+
tf-keras-vis==0.8.5
|
revelado/revelado.py
CHANGED
|
@@ -8,9 +8,15 @@ import re
|
|
| 8 |
from PIL import Image, ImageChops, ImageEnhance
|
| 9 |
|
| 10 |
def convert_to_ela_image(filename, quality=90):
|
|
|
|
|
|
|
|
|
|
| 11 |
im = Image.open(filename).convert('RGB')
|
|
|
|
| 12 |
resaved_im = im
|
|
|
|
| 13 |
ela_im = ImageChops.difference(im, resaved_im)
|
|
|
|
| 14 |
extrema = ela_im.getextrema()
|
| 15 |
max_diff = max([ex[1] for ex in extrema])
|
| 16 |
if max_diff == 0:
|
|
@@ -18,7 +24,10 @@ def convert_to_ela_image(filename, quality=90):
|
|
| 18 |
scale = 255.0 / max_diff
|
| 19 |
|
| 20 |
ela_im = ImageEnhance.Brightness(ela_im).enhance(scale)
|
|
|
|
| 21 |
return ela_im
|
|
|
|
|
|
|
| 22 |
def calculate_ela(original_image, quality=90):
|
| 23 |
|
| 24 |
# Comprimir y descomprimir la imagen
|
|
@@ -38,8 +47,16 @@ def calculate_difference_image(original_image, n):
|
|
| 38 |
|
| 39 |
ela_image = calculate_ela(original_image)
|
| 40 |
auto_contrast_image = apply_auto_contrast(original_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
difference_image = cv2.absdiff(original_image, auto_contrast_image)
|
| 42 |
difference_image = cv2.absdiff(difference_image, ela_image)
|
|
|
|
| 43 |
return difference_image
|
| 44 |
|
| 45 |
def apply_auto_contrast(image, clip_limit=2.0, tile_grid_size=(8, 8)):
|
|
|
|
| 8 |
from PIL import Image, ImageChops, ImageEnhance
|
| 9 |
|
| 10 |
def convert_to_ela_image(filename, quality=90):
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
im = Image.open(filename).convert('RGB')
|
| 15 |
+
|
| 16 |
resaved_im = im
|
| 17 |
+
|
| 18 |
ela_im = ImageChops.difference(im, resaved_im)
|
| 19 |
+
|
| 20 |
extrema = ela_im.getextrema()
|
| 21 |
max_diff = max([ex[1] for ex in extrema])
|
| 22 |
if max_diff == 0:
|
|
|
|
| 24 |
scale = 255.0 / max_diff
|
| 25 |
|
| 26 |
ela_im = ImageEnhance.Brightness(ela_im).enhance(scale)
|
| 27 |
+
|
| 28 |
return ela_im
|
| 29 |
+
|
| 30 |
+
|
| 31 |
def calculate_ela(original_image, quality=90):
|
| 32 |
|
| 33 |
# Comprimir y descomprimir la imagen
|
|
|
|
| 47 |
|
| 48 |
ela_image = calculate_ela(original_image)
|
| 49 |
auto_contrast_image = apply_auto_contrast(original_image)
|
| 50 |
+
|
| 51 |
+
#output_ela_image_path = os.path.join(output_folder, f"{n}_ela.jpg")
|
| 52 |
+
#output_contrast_image_path = os.path.join(output_folder, f"{n}_contraste.jpg")
|
| 53 |
+
|
| 54 |
+
#cv2.imwrite(output_ela_image_path, ela_image)
|
| 55 |
+
#cv2.imwrite(output_contrast_image_path, auto_contrast_image)
|
| 56 |
+
|
| 57 |
difference_image = cv2.absdiff(original_image, auto_contrast_image)
|
| 58 |
difference_image = cv2.absdiff(difference_image, ela_image)
|
| 59 |
+
|
| 60 |
return difference_image
|
| 61 |
|
| 62 |
def apply_auto_contrast(image, clip_limit=2.0, tile_grid_size=(8, 8)):
|