Spaces:
Running
Running
File size: 20,920 Bytes
d1369a2 9eda2f5 33c77d4 9eda2f5 d1369a2 a287b0b 0b50ce4 33c77d4 0b50ce4 33c77d4 0b50ce4 33c77d4 3eaff33 1f837c6 bf098fd 5b874ed 33c77d4 5b874ed 33c77d4 bf098fd 33c77d4 a287b0b 33c77d4 5b874ed ba07c8b 33c77d4 0b50ce4 d1369a2 d3fa801 d1369a2 d3fa801 d1369a2 ac9071c 33c77d4 d1369a2 ac9071c 33c77d4 d0e7981 33c77d4 ac9071c 33c77d4 ac9071c 33c77d4 d0e7981 33c77d4 d0e7981 33c77d4 d1369a2 33c77d4 0b50ce4 d1369a2 33c77d4 d1369a2 33c77d4 15b45d6 d1369a2 33c77d4 d1369a2 33c77d4 d1369a2 0b50ce4 d1369a2 9eda2f5 d0e7981 33c77d4 ac9071c d0e7981 d3fa801 d0e7981 c5755f5 33c77d4 0b50ce4 d3fa801 d0e7981 d3fa801 d0e7981 d3fa801 d0e7981 33c77d4 ac9071c d0e7981 221cc42 33c77d4 0b50ce4 221cc42 d0e7981 0b50ce4 d0e7981 33c77d4 221cc42 33c77d4 221cc42 33c77d4 221cc42 33c77d4 221cc42 d0e7981 d3fa801 221cc42 d3fa801 ac9071c 341d615 9eda2f5 ac9071c 9eda2f5 ac9071c 9eda2f5 ac9071c 9eda2f5 bc4f4c3 9eda2f5 d0e7981 9eda2f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import polars as pl
from data import data_df
# from enum import Enum
from types import SimpleNamespace
from convert import verify_and_return_presult, verify_and_return_basic_ball_kind_code
class Player:
PITCHER = 'pitcher'
BATTER = 'batter'
BOTH = 'both'
STATS = {}
def assert_value(value, options):
assert value in options, f'Expected one of {options}, got {value}'
def register_stat(name, expr, percent, percentile, batted_ball=False):
assert name not in STATS, f'"{name}" already registered, returns {STATS[name]}'
assert_value(percentile, ('pitcher', 'batter', 'both', None))
STATS[name] = dict(expr=expr.alias(name), percent=percent, percentile=percentile, batted_ball=batted_ball)
def get_stat(stat):
return STATS[stat]
def get_stats(stats):
return [get_stat(stat) for stat in stats]
def get_stat_val(stat, key, default=None):
return STATS[stat][key] if stat in STATS else default
def get_stats_val(stats, key, default=None):
return [get_stat_val(stat, key, default) for stat in stats]
valid_pitch = pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)
is_ball = pl.col('presult').is_in(verify_and_return_presult(['Ball', 'Walk']))
is_non_ball = pl.col('pitch') & ~is_ball # pitches that are not balls i.e. no catcher interference, etc.
is_two_str = pl.col('before_s') == 2 # named this way in case I use two_str for 2-Str%
first_count = (pl.col('before_s') == 0) & (pl.col('before_b') == 0)
is_bip_out = pl.col('presult').is_in(verify_and_return_presult([
'Groundout', 'Flyout', 'Lineout', 'Groundout (Double play)',
'Foul fly', 'Foul line (?)',
'Sacrifice bunt', 'Sacrifice fly',
"Fielder's choice", "Sacrifice fielder's choice"
]))
pa = pl.col('pa_code').unique().len()
# to-do: unify PA calculation
# pl.col('pa_code').unique().len() or pl.col('PA').first()
register_stat('FB Velo', pl.col('FB Velo').max(), False, Player.PITCHER)
register_stat('K%', pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len(), True, Player.PITCHER)
register_stat('BB%', pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len(), True, Player.BATTER)
register_stat('Swing%', pl.col('swing').sum() / pl.col('pitch').sum(), True, Player.BOTH)
register_stat('Z-Swing%', (pl.col('swing') & pl.col('zone')).sum() / pl.col('zone').sum(), True, Player.BATTER)
register_stat('Chase%', (pl.col('swing') & ~pl.col('zone')).sum() / (~pl.col('zone')).sum(), True, Player.PITCHER)
register_stat('Contact%', (pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum(), True, Player.BATTER)
register_stat('Z-Con%', (pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum(), True, Player.BATTER)
register_stat('O-Con%', (~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum(), True, Player.BATTER)
register_stat('Whiff%', pl.col('whiff').sum() / pl.col('swing').sum(), True, Player.PITCHER)
register_stat('SwStr%', pl.col('whiff').sum() / pl.col('pitch').sum(), True, Player.PITCHER)
register_stat('CSW%', pl.col('csw').sum() / pl.col('pitch').sum(), True, Player.PITCHER)
register_stat('Ball%', is_ball.sum() / pl.col('pitch').sum(), True, Player.BATTER)
register_stat('Strike%', is_non_ball.sum() / pl.col('pitch').sum(), True, Player.PITCHER)
register_stat('F-Str%', (is_non_ball & first_count).sum() / first_count.sum(), True, Player.PITCHER)
register_stat('PAR%', ((is_two_str & pl.col('presult').str.contains('strikeout')).sum()) / is_two_str.sum(), True, Player.PITCHER)
register_stat('PLUS%', (pl.col('csw') | (pl.col('presult') == 'Foul') | is_bip_out).sum() / pl.col('pitch').sum(), True, Player.PITCHER)
register_stat('Behind%', ((pl.col('before_b') > pl.col('before_s')) & (pl.col('before_s') < 2) & (pl.col('before_b') > 1)).sum() / pl.len(), True, Player.BATTER)
register_stat('Zone%', pl.col('zone').sum() / pl.col('pitch').sum(), True, Player.PITCHER)
register_stat('Glove%', (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') < 0).otherwise(pl.col('x') > 0)).mean(), True, None)
register_stat('Arm%', (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') >= 0).otherwise(pl.col('x') <= 0)).mean(), True, None)
register_stat('High%', (pl.col('y') > 125).mean(), True, None)
register_stat('Low%', (pl.col('y') <= 125).mean(), True, None)
register_stat('MM%', (pl.col('x').is_between(-20, 20) & pl.col('y').is_between(100, 100+50)).mean(), True, None)
register_stat('Sec%', (pl.col('basic_ballKind_code').is_in(verify_and_return_basic_ball_kind_code(['BR', 'OS']))).sum() / pl.col('pitch').sum(), True, None)
register_stat('GB%', pl.col('G') + pl.col('B'), True, Player.PITCHER, True)
register_stat('FB%', pl.col('F') + pl.col('P'), True, Player.BATTER, True)
register_stat('LD%', pl.col('L'), True, Player.BATTER, True)
register_stat('IFFB%', pl.col('P'), True, Player.PITCHER, True)
register_stat('OFFB%', pl.col('F'), True, Player.BATTER, True)
register_stat('AIR%', pl.col('F') + pl.col('P') + pl.col('L'), True, Player.BATTER, True)
register_stat('HR%', (pl.col('presult') == 'Home run').sum() / pa, True, Player.BATTER)
register_stat('HR/FB', (pl.col('presult') == 'Home run').sum() / (pl.col('aux_bresult').struct.field('batType') == 'F').sum(), True, Player.BATTER)
register_stat('HR/OFFB', (pl.col('presult') == 'Home run').sum() / (pl.col('aux_bresult').struct.field('batType').is_in(['F', 'P'])).sum(), True, Player.BATTER)
# register_stat('Usage', pl.col('count')/pl.sum('count').over('pitId'), True, None)
register_stat('Usage', pl.len()/pl.first('Pitches'), True, None)
register_stat('Avg Velo', pl.when(valid_pitch).then('mph').mean(), False, None)
register_stat('Max Velo', pl.col('mph').max(), False, None)
def filter_data_by_date_and_game_kind(data, start_date=None, end_date=None, game_kind=None):
if start_date is not None:
data = data.filter(pl.col('date') >= start_date)
if end_date is not None:
data = data.filter(pl.col('date') <= end_date)
if game_kind is not None:
data = data.filter(pl.col('coarse_game_kind') == game_kind)
return data
def compute_team_games(data):
data = (
data
.with_columns(
pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'),
pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games')
)
)
game_data = (
data
.group_by('HomeTeamNameES')
.first()
[['HomeTeamNameES', 'home_games']]
.rename({'HomeTeamNameES': 'team'})
.join(
(
data
.group_by('VisitorTeamNameES')
.first()
[['VisitorTeamNameES', 'visitor_games']]
.rename({'VisitorTeamNameES': 'team'})
),
on='team',
how='full'
)
.fill_null(0)
.with_columns(
(pl.col('home_games')+pl.col('visitor_games')).alias('games'),
pl.when(pl.col('team').is_null())
.then(pl.col('team_right'))
.otherwise(pl.col('team')).alias('team')
)
)
return (
data
.drop('home_games', 'visitor_games')
.join(
game_data[['team', 'games']].rename({'games': 'home_games'}),
left_on='HomeTeamNameES',
right_on='team'
)
.join(
game_data[['team', 'games']].rename({'games': 'visitor_games'}),
left_on='VisitorTeamNameES',
right_on='team'
)
)
def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1, pitcher_lr='both', batter_lr='both', group_by_team=False):
assert pitcher_lr in ('both', 'l', 'r')
assert batter_lr in ('both', 'l', 'r')
assert player_type in ('pitcher', 'batter', 'team pitching', 'team batting')
assert pitch_class_type in ('general', 'specific')
# pitching or batting, player or team
pitching = player_type in ('pitcher', 'team pitching')
team = player_type in ('team pitching', 'team batting')
# handedness filters
if pitcher_lr != 'both':
data = data.filter(pl.col('pitLR') == pitcher_lr)
if batter_lr != 'both':
data = data.filter(pl.col('batLR') == batter_lr)
if pitching:
over_col = 'pitId' if not team else 'pitcher_team_name_short'
else:
over_col = 'batId' if not team else 'batter_team_name_short'
# id_cols = ['pitId' if player_type == 'pitcher' else 'batId']
# team_col = 'pitcher_team_name_short' if pitching else 'batter_team_name_short'
# if group_by_team:
# id_cols.append(team_col)
# col names
match player_type:
case 'pitcher':
id_cols = ['pitId']
name_col = 'pitcher_name'
case 'batter':
id_cols = ['batId']
name_col = 'batter_name'
case _:
id_cols = []
name_col = None
team_col = 'pitcher_team_name_short' if pitching else 'batter_team_name_short'
if group_by_team or team:
id_cols.append(team_col)
handedness_col = 'pitLR' if pitching else 'batLR'
new_handedness_col = 'Throws' if pitching else 'Bats'
# name_col = 'pitcher_name' if player_type == 'pitcher' else 'batter_name'
pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code'
pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind'
pitch_stats = (
data
.with_columns(
(pl.col('ballSpeed') / 1.609).round(1).alias('mph'),
pl.when(pl.col('general_ballKind_code').is_in(['4S', 'FC', 'SI'])).then(pl.when(valid_pitch).then('ballSpeed').mean().over(over_col, 'general_ballKind_code')).mul(1/1.609).round(1).alias('FB Velo'),
pl.len().over(over_col).alias('Pitches')
)
.group_by(*id_cols, pitch_col)
.agg(
*([pl.col(name_col).first()] if not team else []),
*([] if group_by_team or team else [pl.col(team_col).last()]),
*(
[pl.col(handedness_col).first().str.to_uppercase().alias(new_handedness_col) ]
if not (team and ((pitcher_lr == 'both') if pitching else (batter_lr == 'both')))
else []
),
# pl.first(name_col),
# pl.col('pitLR').first().str.to_uppercase().alias('Throws'),
*([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []),
pl.first(pitch_name_col),
pl.len().alias('count'),
# pl.when(pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)).then('ballSpeed').mean().alias('Avg KPH'),
# pl.col('ballSpeed').max().alias('Max KPH'),
# pl.when(pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)).then('mph').mean().round(1).alias('Avg MPH'),
# pl.col('mph').max().alias('Max MPH'),
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
# swing,
# z_swing,
# chase,
# contact,
# z_con,
# o_con,
# whiff,
# swstr,
# csw,
# strike,
# ball,
# f_strike,
# par,
# zone,
# glove,
# arm,
# high,
# low,
# mm,
# behind
*[stat['expr'] for stat in STATS.values() if not stat['batted_ball']]
)
.with_columns(
# (pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
# get_stat_val('Usage', 'expr'),
(pl.col('count') >= min_pitches).alias('qualified'),
)
.explode('batType')
.unnest('batType')
.pivot(on='batType', values='proportion')
.fill_null(0)
.with_columns(
*[stat['expr'] for stat in STATS.values() if stat['batted_ball']]
# (pl.col('G') + pl.col('B')).alias('GB%'),
# (pl.col('F') + pl.col('P')).alias('FB%'),
# pl.col('L').alias('LD%'),
# pl.col('P').alias('IFFB%'),
# pl.col('F').alias('OFFB%'),
# (pl.col('F') + pl.col('P') + pl.col('L')).alias('AIR%')
)
.drop('G', 'F', 'B', 'P', 'L', 'null')
.with_columns(
# (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=((stat in ['FB%', 'LD%', 'OFFB%', 'AIR%', 'Ball%', 'Behind%'] or 'Contact%' in stat)))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
# for stat in ['Avg KPH', 'Max KPH', 'Avg MPH', 'Max MPH', 'Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'Strike%', 'Ball%', 'F-Str%', 'PAR%', 'GB%', 'FB%', 'LD%', 'OFFB%', 'IFFB%', 'AIR%', 'Zone%', 'Behind%']
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(get_stat_val(stat, 'percentile')) not in (Player.PITCHER if pitching else Player.BATTER, Player.BOTH))
/
pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
for stat in STATS.keys()
)
.rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {})
.sort(id_cols[0], 'count', descending=[False, True])
)
return pitch_stats
def compute_player_stats(data, player_type, qual='qualified', pitcher_lr='both', batter_lr='both', group_by_team=False):
# TO-DO: figure out if I still need group_by_team
assert pitcher_lr in ('both', 'l', 'r')
assert batter_lr in ('both', 'l', 'r')
assert player_type in ('pitcher', 'batter', 'team pitching', 'team batting')
# pitching or batting, player or team
pitching = player_type in ('pitcher', 'team pitching')
team = player_type in ('team pitching', 'team batting')
# handedness filters
if pitcher_lr != 'both':
data = data.filter(pl.col('pitLR') == pitcher_lr)
if batter_lr != 'both':
data = data.filter(pl.col('batLR') == batter_lr)
if pitching:
over_col = 'pitId' if not team else 'pitcher_team_name_short'
else:
over_col = 'batId' if not team else 'batter_team_name_short'
data = (
compute_team_games(data)
.with_columns(
pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'),
# pl.col('inning_code').unique().len().over(over_col).alias('IP'),
(pl.col('bso').struct.field('o').cast(pl.Int32) - pl.col('beforeBso').struct.field('o').cast(pl.Int32)).sum().mul(1/3).over(over_col).alias('IP'),
pl.col('pa_code').unique().len().over(over_col).alias('PA'),
pl.col('presult').is_in(verify_and_return_presult([
'Single', 'Double', 'Triple', 'Home run', 'Inside-the-park home run',
'Groundout', 'Flyout', 'Lineout', 'Groundout (Double play)',
'Foul fly', 'Foul line (?)',
'Error', 'Sacrifice hit error', 'Sacrifice fly error',
"Fielder's choice",
'Bunt strikeout', 'Swinging strikeout', 'Looking strikeout'
])).sum().over(over_col).alias('AB'),
pl.len().over(over_col).alias('Pitches')
# pl.col('presult').is_in(verify_and_return_presult([
# 'Groundout', 'Flyout', 'Lineout', 'Groundout (Double play)',
# 'Foul fly', 'Foul line (?)',
# 'Sacrifice bunt', 'Sacrifice fly',
# "Fielder's choice", "Sacrifice fielder's choice",
# 'Bunt strikeout', 'Swinging strikeout', 'Looking strikeout'
# ])).sum().over('pitId').mul(1/3).alias('IP')
)
)
# qualifiers
qualified_factor = 1 if pitching else 3.1
qual_col = 'IP' if pitching else 'PA'
if qual == 'qualified':
data = data.with_columns((pl.col(qual_col) >= qualified_factor * pl.col('games')).alias('qualified'))
else:
data = data.with_columns((pl.col(qual_col) >= qual).alias('qualified'))
# percentile ascending/descending
# if pitching:
# stat_descending_pctl = lambda stat: stat in ['BB%', 'Ball%', 'FB%', 'LD%', 'OFFB%', 'AIR%', 'Z-Swing%', 'Behind%', 'OBP'] or 'Contact%' in stat
# else:
# stat_descending_pctl = lambda stat: not (stat in ['BB%', 'Ball%', 'FB%', 'LD%', 'OFFB%', 'AIR%', 'Swing%', 'Z-Swing%', 'Behind%', 'OBP'] or 'Contact%' in stat)
# col names
match player_type:
case 'pitcher':
id_cols = ['pitId']
name_col = 'pitcher_name'
case 'batter':
id_cols = ['batId']
name_col = 'batter_name'
case _:
id_cols = []
name_col = None
team_col = 'pitcher_team_name_short' if pitching else 'batter_team_name_short'
if group_by_team or team:
id_cols.append(team_col)
handedness_col = 'pitLR' if pitching else 'batLR'
new_handedness_col = 'Throws' if pitching else 'Bats'
player_stats = (
data
.with_columns(
(pl.col('ballSpeed') / 1.609).round(1).alias('mph'),
pl.when(pl.col('general_ballKind_code').is_in(['4S', 'FC', 'SI'])).then(pl.when(valid_pitch).then('ballSpeed').mean().over(over_col, 'general_ballKind_code')).mul(1/1.609).round(1).alias('FB Velo')
)
.group_by(id_cols)
.agg(
*([pl.col(name_col).first()] if not team else []),
*([] if group_by_team or team else [pl.col(team_col).last()]),
*(
[pl.col(handedness_col).first().str.to_uppercase().alias(new_handedness_col) ]
if not (team and ((pitcher_lr == 'both') if pitching else (batter_lr == 'both')))
else []
),
pl.col('IP').first(),
pl.col('PA').first(),
# pl.col('FB Velo').max(),
# (pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'),
# (pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'),
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
# swing,
# z_swing,
# chase,
# contact,
# z_con,
# o_con,
# whiff,
# swstr,
# csw,
# strike,
# ball,
# f_strike,
# par,
# zone,
# glove,
# arm,
# high,
# low,
# mm,
# behind,
# pl.col('AB').first(),
# h,
# bb,
# hbp,
# sf,
# obp,
# pl.first('qualified')
pl.first('qualified'),
*[stat['expr'] for stat in STATS.values() if not stat['batted_ball']]
)
.explode('batType')
.unnest('batType')
.pivot(on='batType', values='proportion')
.fill_null(0)
.with_columns(
*[stat['expr'] for stat in STATS.values() if stat['batted_ball']]
# (pl.col('G') + pl.col('B')).alias('GB%'),
# (pl.col('F') + pl.col('P')).alias('FB%'),
# pl.col('L').alias('LD%'),
# pl.col('P').alias('IFFB%'),
# pl.col('F').alias('OFFB%'),
# (pl.col('F') + pl.col('P') + pl.col('L')).alias('AIR%')
)
.drop('G', 'F', 'B', 'P', 'L')
.with_columns(
# (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=stat_descending_pctl(stat))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
# for stat in ['FB Velo', 'K%', 'BB%', 'Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'Strike%', 'Ball%', 'F-Str%', 'PAR%', 'GB%', 'FB%', 'LD%', 'OFFB%', 'IFFB%', 'AIR%', 'Zone%', 'Behind%', 'OBP']
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(get_stat_val(stat, 'percentile')) not in (Player.PITCHER if pitching else Player.BATTER, Player.BOTH))
/
pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
for stat in STATS.keys()
)
.sort(qual_col, descending=True)
)
return player_stats
def get_pitcher_stats(id, lr='both', game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'):
source_data = data_df
source_data = filter_data_by_date_and_game_kind(source_data, start_date=start_date, end_date=end_date, game_kind=game_kind)
# if lr is not None:
# source_data =
pitch_stats = compute_pitch_stats(source_data, player_type='pitcher', pitch_class_type=pitch_class_type, min_pitches=min_pitches, batter_lr=lr, group_by_team=False).filter(pl.col('pitId') == id)
pitch_shapes = (
(source_data.filter(pl.col('batLR') == lr) if lr != 'both' else source_data)
.filter(
(pl.col('pitId') == id) &
pl.col('x').is_not_null() &
pl.col('y').is_not_null() &
(pl.col('ballSpeed') > 0)
)
[['pitId', 'general_ballKind_code', 'ballKind_code', 'ballSpeed', 'x', 'y']]
.with_columns((pl.col('ballSpeed')/1.609).alias('ballSpeed_mph'))
)
pitcher_stats = compute_player_stats(source_data, player_type='pitcher', qual=min_ip, batter_lr=lr, group_by_team=False).filter(pl.col('pitId') == id)
return SimpleNamespace(pitcher_stats=pitcher_stats, pitch_stats=pitch_stats, pitch_shapes=pitch_shapes)
|