Spaces:
Configuration error
Configuration error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # Inspired from https://github.com/rwightman/pytorch-image-models | |
| from contextlib import contextmanager | |
| import torch | |
| from .states import swap_state | |
| class ModelEMA: | |
| """ | |
| Perform EMA on a model. You can switch to the EMA weights temporarily | |
| with the `swap` method. | |
| ema = ModelEMA(model) | |
| with ema.swap(): | |
| # compute valid metrics with averaged model. | |
| """ | |
| def __init__(self, model, decay=0.9999, unbias=True, device='cpu'): | |
| self.decay = decay | |
| self.model = model | |
| self.state = {} | |
| self.count = 0 | |
| self.device = device | |
| self.unbias = unbias | |
| self._init() | |
| def _init(self): | |
| for key, val in self.model.state_dict().items(): | |
| if val.dtype != torch.float32: | |
| continue | |
| device = self.device or val.device | |
| if key not in self.state: | |
| self.state[key] = val.detach().to(device, copy=True) | |
| def update(self): | |
| if self.unbias: | |
| self.count = self.count * self.decay + 1 | |
| w = 1 / self.count | |
| else: | |
| w = 1 - self.decay | |
| for key, val in self.model.state_dict().items(): | |
| if val.dtype != torch.float32: | |
| continue | |
| device = self.device or val.device | |
| self.state[key].mul_(1 - w) | |
| self.state[key].add_(val.detach().to(device), alpha=w) | |
| def swap(self): | |
| with swap_state(self.model, self.state): | |
| yield | |
| def state_dict(self): | |
| return {'state': self.state, 'count': self.count} | |
| def load_state_dict(self, state): | |
| self.count = state['count'] | |
| for k, v in state['state'].items(): | |
| self.state[k].copy_(v) | |