Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,68 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pdfplumber
|
| 3 |
+
import openai
|
| 4 |
+
import os
|
| 5 |
|
| 6 |
+
# Set up OpenAI API Key (Replace with your actual key)
|
| 7 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
+
def clean_text(text):
|
| 11 |
+
"""Cleans extracted text for better processing by the model."""
|
| 12 |
+
text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters
|
| 13 |
+
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines
|
| 14 |
+
text = re.sub(r'[^a-zA-Z0-9.,!?;:\'\"()\-]', ' ', text) # Keep basic punctuation
|
| 15 |
+
text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers
|
| 16 |
+
return text
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def extract_text_from_pdf(pdf_file):
|
| 19 |
+
"""Extract and clean text from the uploaded PDF."""
|
| 20 |
+
try:
|
| 21 |
+
with pdfplumber.open(pdf_file) as pdf:
|
| 22 |
+
text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text()))
|
| 23 |
+
return text
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error extracting text: {e}")
|
| 26 |
+
return None
|
| 27 |
|
| 28 |
+
def split_text(text, chunk_size=500):
|
| 29 |
+
"""Splits text into smaller chunks for faster processing."""
|
| 30 |
+
chunks = []
|
| 31 |
+
for i in range(0, len(text), chunk_size):
|
| 32 |
+
chunks.append(text[i:i+chunk_size])
|
| 33 |
+
return chunks
|
| 34 |
|
| 35 |
+
def chatbot(pdf_file, user_question):
|
| 36 |
+
"""Processes the PDF and answers the user's question."""
|
| 37 |
+
|
| 38 |
+
# Step 1: Extract text from the PDF
|
| 39 |
+
text = extract_text_from_pdf(pdf_file)
|
| 40 |
+
|
| 41 |
+
# Step 2: Split into chunks
|
| 42 |
+
chunks = split_text(text)
|
| 43 |
+
|
| 44 |
+
# Step 3: Use only the first chunk for now (to reduce token usage)
|
| 45 |
+
if not chunks:
|
| 46 |
+
return "Could not extract any text from the PDF."
|
| 47 |
|
| 48 |
+
prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Step 4: Send to OpenAI's GPT-3.5
|
| 51 |
+
response = openai.ChatCompletion.create(
|
| 52 |
+
model="gpt-3.5-turbo",
|
| 53 |
+
messages=[{"role": "user", "content": prompt}]
|
| 54 |
+
)
|
| 55 |
|
| 56 |
+
# Step 5: Return the chatbot's response
|
| 57 |
+
return response["choices"][0]["message"]["content"]
|
| 58 |
|
| 59 |
+
# Gradio Interface
|
| 60 |
+
iface = gr.Interface(
|
| 61 |
+
fn=chatbot,
|
| 62 |
+
inputs=[gr.File(label="Upload PDF"), gr.Textbox(label="Ask a Question")],
|
| 63 |
+
outputs=gr.Textbox(label="Answer"),
|
| 64 |
+
title="PDF Q&A Chatbot"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# Launch Gradio app
|
| 68 |
+
iface.launch()
|
|
|