Spaces:
Build error
Build error
Update app.py
Browse filesupdated code to handle file storage
app.py
CHANGED
|
@@ -29,29 +29,66 @@ embedding_dim = 768 # Adjust according to model
|
|
| 29 |
index = faiss.IndexFlatL2(embedding_dim)
|
| 30 |
documents = [] # Store raw text for reference
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def store_document(text):
|
| 33 |
print("storing document")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
index.add(
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
print(f"your document has been stored")
|
| 41 |
|
| 42 |
return "Document stored!"
|
| 43 |
|
| 44 |
def retrieve_document(query):
|
| 45 |
print(f"retrieving doc based on: \n{query}")
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
_, closest_idx = index.search(np.array(query_embedding, dtype=np.float32), 1)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
def clean_text(text):
|
|
@@ -131,4 +168,4 @@ iface = gr.Interface(
|
|
| 131 |
)
|
| 132 |
|
| 133 |
# Launch Gradio app
|
| 134 |
-
iface.launch()
|
|
|
|
| 29 |
index = faiss.IndexFlatL2(embedding_dim)
|
| 30 |
documents = [] # Store raw text for reference
|
| 31 |
|
| 32 |
+
|
| 33 |
+
# initialize the variables to store documents
|
| 34 |
+
DOCUMENT_DIR = "Documents"
|
| 35 |
+
INDEX_FILE = "faiss_index.py" # stores embeddings
|
| 36 |
+
METADATA_FILE = "metadata.json" # stores Document metadata
|
| 37 |
+
|
| 38 |
+
# create the directory
|
| 39 |
+
os.makedirs(DOCUMENT_DIR, exists_ok=True)
|
| 40 |
+
|
| 41 |
+
# load the faiss indexes file
|
| 42 |
+
if os.path.exists(INDEX_FILE): # check if index file exists
|
| 43 |
+
stored_embeddings = np.load(INDEX_FILE) # load emeddings
|
| 44 |
+
if stored_embeddings.shape[0] > 0:
|
| 45 |
+
index.add(stored_embeddings)
|
| 46 |
+
|
| 47 |
+
# load the document metadata
|
| 48 |
+
if os.path.exists(METADATA_FILE): # check if metadata exists
|
| 49 |
+
with open(METADATA_FILE, "r") as f:
|
| 50 |
+
metadata = json.load(f)
|
| 51 |
+
else:
|
| 52 |
+
metadata = {}
|
| 53 |
+
|
| 54 |
def store_document(text):
|
| 55 |
print("storing document")
|
| 56 |
+
|
| 57 |
+
# Generate a unique filename
|
| 58 |
+
filename = os.path.join(DOCS_DIR, f"doc_{len(metadata) + 1}.txt")
|
| 59 |
+
|
| 60 |
+
# Save document in a file
|
| 61 |
+
with open(filename, "w") as f:
|
| 62 |
+
f.write(text)
|
| 63 |
|
| 64 |
+
# Generate and store embedding
|
| 65 |
+
embedding = embedding_model.encode([text]).astype(np.float32)
|
| 66 |
+
index.add(embedding)
|
| 67 |
+
|
| 68 |
+
# Update metadata
|
| 69 |
+
metadata[len(metadata)] = filename
|
| 70 |
+
with open(METADATA_FILE, "w") as f:
|
| 71 |
+
json.dump(metadata, f)
|
| 72 |
+
|
| 73 |
+
# Save FAISS index
|
| 74 |
+
np.save(INDEX_FILE, index.reconstruct_n(0, index.ntotal))
|
| 75 |
|
| 76 |
+
print(f"your document has been stored at: {filename}")
|
| 77 |
|
| 78 |
return "Document stored!"
|
| 79 |
|
| 80 |
def retrieve_document(query):
|
| 81 |
print(f"retrieving doc based on: \n{query}")
|
| 82 |
|
| 83 |
+
query_embedding = embedding_model.encode([query]).astype(np.float32)
|
| 84 |
+
_, closest_idx = index.search(query_embedding, 1)
|
|
|
|
| 85 |
|
| 86 |
+
if closest_idx[0][0] in metadata: # Ensure a valid match
|
| 87 |
+
filename = metadata[str(closest_idx[0][0])]
|
| 88 |
+
with open(filename, "r") as f:
|
| 89 |
+
return f.read()
|
| 90 |
+
else:
|
| 91 |
+
return None
|
| 92 |
|
| 93 |
|
| 94 |
def clean_text(text):
|
|
|
|
| 168 |
)
|
| 169 |
|
| 170 |
# Launch Gradio app
|
| 171 |
+
iface.launch()
|