Spaces:
Running
on
Zero
Running
on
Zero
File size: 119,260 Bytes
0d712f8 1f7ffd5 0d712f8 f7291d8 1f7ffd5 f5d659d f7291d8 1f7ffd5 0d712f8 5b5b5fe 1f7ffd5 0d712f8 f7291d8 1f7ffd5 f7291d8 1f7ffd5 f7291d8 1f7ffd5 0d712f8 1f7ffd5 18e10c2 1f7ffd5 18e10c2 1f7ffd5 f7291d8 1f7ffd5 f7291d8 18e10c2 67c7b1f f7291d8 0d712f8 1f16a19 0d712f8 67c7b1f f7291d8 67c7b1f f7291d8 67c7b1f f7291d8 67c7b1f 1f16a19 67c7b1f 18e10c2 1f7ffd5 f7291d8 1f7ffd5 f7291d8 1f7ffd5 1f16a19 1f7ffd5 f7291d8 0d712f8 96f8c12 0d712f8 96f8c12 0d712f8 a25a409 0d712f8 96f8c12 f7291d8 0d712f8 f7291d8 cee611a 1f7ffd5 18e10c2 1f7ffd5 18e10c2 f7291d8 0d712f8 f7291d8 18e10c2 f7291d8 0d712f8 f7291d8 515964d f7291d8 0d712f8 f7291d8 515964d e173e7b b738f5e f7291d8 e173e7b f7291d8 0d712f8 f7291d8 e173e7b f7291d8 e173e7b 515964d f7291d8 0d712f8 f7291d8 515964d e173e7b b738f5e f7291d8 e173e7b f7291d8 0d712f8 f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b b738f5e e173e7b f7291d8 e173e7b f7291d8 e173e7b f7291d8 e173e7b 18e10c2 f7291d8 18e10c2 6587064 18e10c2 6587064 18e10c2 6587064 18e10c2 6587064 18e10c2 6587064 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 6587064 18e10c2 1f7ffd5 f7291d8 0d712f8 f7291d8 18e10c2 0d712f8 18e10c2 e173e7b 18e10c2 0d712f8 18e10c2 f7291d8 18e10c2 0d712f8 18e10c2 b738f5e 18e10c2 1f7ffd5 18e10c2 b738f5e 18e10c2 1f7ffd5 18e10c2 1f7ffd5 0d712f8 6dcf22b f7291d8 6dcf22b 1f7ffd5 18e10c2 0d712f8 18e10c2 f7291d8 0d712f8 18e10c2 b738f5e 18e10c2 1f7ffd5 18e10c2 1f7ffd5 0d712f8 f7291d8 1f7ffd5 1318560 0d712f8 1318560 f7291d8 1318560 f7291d8 1318560 0d712f8 1318560 0d712f8 1318560 f7291d8 0d712f8 f7291d8 18e10c2 e173e7b 18e10c2 b738f5e 18e10c2 0d712f8 b738f5e 18e10c2 6587064 18e10c2 6587064 18e10c2 6587064 18e10c2 0d712f8 b738f5e 18e10c2 0d712f8 b738f5e 18e10c2 6587064 18e10c2 1318560 18e10c2 6587064 18e10c2 6587064 18e10c2 1318560 18e10c2 5b5b5fe 6587064 5b5b5fe 515964d f7291d8 5b5b5fe 515964d 6587064 18e10c2 0d712f8 18e10c2 5b5b5fe 18e10c2 0d712f8 6dcf22b f7291d8 6dcf22b 18e10c2 0d712f8 b738f5e 18e10c2 f7291d8 1318560 18e10c2 1318560 18e10c2 1318560 18e10c2 0d712f8 18e10c2 5b5b5fe 18e10c2 0d712f8 f7291d8 18e10c2 1318560 0d712f8 b738f5e 1318560 f7291d8 1318560 f7291d8 1318560 1f7ffd5 1318560 0d712f8 1318560 0d712f8 1318560 1f7ffd5 f7291d8 0d712f8 00847d8 d88a980 1f7ffd5 d88a980 18e10c2 d88a980 0d712f8 f7291d8 d88a980 cee611a d88a980 e173e7b 4bc2b89 18e10c2 58a4bdb 18e10c2 4bc2b89 58a4bdb 7a24597 18e10c2 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 e173e7b f7291d8 58a4bdb e173e7b 58a4bdb f7291d8 e173e7b 58a4bdb e173e7b f7291d8 e173e7b f7291d8 e173e7b 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb f7291d8 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 f7291d8 18e10c2 1318560 58a4bdb 1318560 58a4bdb f7291d8 e173e7b 58a4bdb 1318560 f7291d8 1318560 58a4bdb 1318560 58a4bdb f7291d8 1318560 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb b738f5e f7291d8 58a4bdb b738f5e 58a4bdb f7291d8 b738f5e 58a4bdb b738f5e 58a4bdb f7291d8 b738f5e 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 58a4bdb 18e10c2 e173e7b f7291d8 58a4bdb e173e7b f7291d8 e173e7b 18e10c2 58a4bdb f7291d8 e173e7b 58a4bdb e173e7b 58a4bdb f7291d8 e173e7b 58a4bdb e173e7b f7291d8 e173e7b 58a4bdb e173e7b 58a4bdb f7291d8 1f7ffd5 7a24597 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 58a4bdb f7291d8 4b1e9b9 1f7ffd5 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 e173e7b f7291d8 58a4bdb e173e7b 58a4bdb f7291d8 e173e7b 58a4bdb e173e7b f7291d8 e173e7b f7291d8 e173e7b 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb f7291d8 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb 18e10c2 f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 f7291d8 18e10c2 1318560 f7291d8 1318560 f7291d8 1318560 f7291d8 1318560 f7291d8 1318560 f7291d8 1318560 f7291d8 1318560 58a4bdb 1318560 58a4bdb f7291d8 1318560 58a4bdb f7291d8 58a4bdb 18e10c2 1318560 f7291d8 18e10c2 58a4bdb 18e10c2 1318560 18e10c2 58a4bdb f7291d8 18e10c2 b738f5e f7291d8 58a4bdb b738f5e 58a4bdb f7291d8 b738f5e 58a4bdb b738f5e 58a4bdb f7291d8 b738f5e 58a4bdb f7291d8 58a4bdb 18e10c2 58a4bdb 18e10c2 e173e7b f7291d8 58a4bdb e173e7b f7291d8 e173e7b 18e10c2 58a4bdb f7291d8 e173e7b 58a4bdb e173e7b 58a4bdb f7291d8 e173e7b 58a4bdb e173e7b f7291d8 e173e7b 58a4bdb e173e7b 58a4bdb f7291d8 faa27af 58a4bdb 18e10c2 58a4bdb 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb 18e10c2 58a4bdb f7291d8 18e10c2 58a4bdb f7291d8 18e10c2 1f7ffd5 58a4bdb 0d712f8 18e10c2 f7291d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 |
import json
import os
import random
import sys
import warnings
from typing import Any, Mapping, Sequence, Union
import gradio as gr
import numpy as np
import spaces
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
# ComfyUI imports (after HF hub downloads)
from comfy import model_management
from comfy.cli_args import args
from comfy_extras.nodes_freelunch import FreeU_V2
# Suppress torchsde floating-point precision warnings (cosmetic only, no functional impact)
warnings.filterwarnings("ignore", message="Should have tb<=t1 but got")
hf_hub_download(
repo_id="stable-diffusion-v1-5/stable-diffusion-v1-5",
filename="v1-5-pruned-emaonly.ckpt",
local_dir="models/checkpoints",
)
hf_hub_download(
repo_id="Lykon/DreamShaper",
filename="DreamShaper_3.32_baked_vae_clip_fix_half.safetensors",
local_dir="models/checkpoints",
)
hf_hub_download(
repo_id="Lykon/DreamShaper",
filename="DreamShaper_6.31_BakedVae_pruned.safetensors",
local_dir="models/checkpoints",
)
hf_hub_download(
repo_id="latentcat/latentcat-controlnet",
filename="models/control_v1p_sd15_brightness.safetensors",
local_dir="models/controlnet",
)
hf_hub_download(
repo_id="comfyanonymous/ControlNet-v1-1_fp16_safetensors",
filename="control_v11f1e_sd15_tile_fp16.safetensors",
local_dir="models/controlnet",
)
hf_hub_download(
repo_id="Lykon/dreamshaper-7",
filename="vae/diffusion_pytorch_model.fp16.safetensors",
local_dir="models",
)
hf_hub_download(
repo_id="stabilityai/sd-vae-ft-mse-original",
filename="vae-ft-mse-840000-ema-pruned.safetensors",
local_dir="models/vae",
)
hf_hub_download(
repo_id="lllyasviel/Annotators",
filename="RealESRGAN_x4plus.pth",
local_dir="models/upscale_models",
)
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
import server
from nodes import init_extra_nodes
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import NODE_CLASS_MAPPINGS # noqa: E402
# Initialize common nodes
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="DreamShaper_3.32_baked_vae_clip_fix_half.safetensors"
)
checkpointloadersimple_artistic = checkpointloadersimple.load_checkpoint(
ckpt_name="DreamShaper_6.31_BakedVae_pruned.safetensors"
)
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]()
controlnetapplyadvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]()
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
vaedecodetiled = NODE_CLASS_MAPPINGS["VAEDecodeTiled"]()
import_custom_nodes()
comfy_qr_by_module_size = NODE_CLASS_MAPPINGS["comfy-qr-by-module-size"]()
tilepreprocessor = NODE_CLASS_MAPPINGS["TilePreprocessor"]()
# Load additional nodes for artistic pipeline (upscale model loaded lazily when needed)
imageupscalewithmodel = NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]()
imagescale = NODE_CLASS_MAPPINGS["ImageScale"]()
latentupscaleby = NODE_CLASS_MAPPINGS["LatentUpscaleBy"]()
# MPS (Apple Silicon) comprehensive workaround for black QR code bug
# Issue: PyTorch 2.6+ FP16 handling on MPS causes black images in samplers
# Additional issue: MPS tensor operations can produce NaN/inf values (PyTorch bug #84364)
# Solution: Monkey-patch dtype functions to force fp32, enable MPS fallback
# References: https://civitai.com/articles/11106, https://github.com/pytorch/pytorch/issues/84364
# Lazy upscale model loading - only load when needed
# This is safe for ZeroGPU since upscaling happens inside @spaces.GPU function
_upscale_model_cache = None
def get_upscale_model():
"""Load upscale model on-demand and cache it within GPU context"""
global _upscale_model_cache
if _upscale_model_cache is None:
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
_upscale_model_cache = upscalemodelloader.load_model(
model_name="RealESRGAN_x4plus.pth"
)
return _upscale_model_cache
def calculate_vae_tile_size(image_size):
"""
Calculate optimal VAE tile size based on image dimensions.
Args:
image_size: Width/height of square image in pixels
Returns:
tuple: (tile_size, overlap) or (None, None) for no tiling
"""
# No tiling for small images (fits in memory easily)
if image_size <= 512:
return None, None
# Medium images: 512px tiles
elif image_size <= 1024:
return 512, 64
# Large images: 768px tiles (reduces tile count)
elif image_size <= 2048:
return 768, 96
# XL images: 1024px tiles
else:
return 1024, 128
def log_progress(message, gr_progress=None, progress_value=None):
"""Helper to log progress to both console and Gradio (simple stage-based updates)"""
print(f"{message}", flush=True)
if gr_progress and progress_value is not None:
gr_progress(progress_value, desc=message)
# Device-specific optimizations
# Note: On ZeroGPU, torch.cuda.is_available() is False at module load time
# CUDA only becomes available inside @spaces.GPU decorated functions
# So we only check for MPS (local development) and apply those workarounds
if torch.backends.mps.is_available():
# MPS device (Apple Silicon) - force fp32 to avoid black image bug
print(f"MPS device detected (PyTorch {torch.__version__})")
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = (
"1" # Enable MPS fallback for unsupported ops
)
# Store original dtype functions
_original_unet_dtype = model_management.unet_dtype
_original_vae_dtype = model_management.vae_dtype
_original_text_encoder_dtype = model_management.text_encoder_dtype
# Monkey-patch dtype functions to force fp32 for MPS
def mps_safe_unet_dtype(device=None, *args_inner, **kwargs):
if device is not None and model_management.is_device_mps(device):
return torch.float32
if model_management.mps_mode():
return torch.float32
return _original_unet_dtype(device, *args_inner, **kwargs)
def mps_safe_vae_dtype(device=None, *args_inner, **kwargs):
if device is not None and model_management.is_device_mps(device):
return torch.float32
if model_management.mps_mode():
return torch.float32
return _original_vae_dtype(device, *args_inner, **kwargs)
def mps_safe_text_encoder_dtype(device=None, *args_inner, **kwargs):
if device is not None and model_management.is_device_mps(device):
return torch.float32
if model_management.mps_mode():
return torch.float32
return _original_text_encoder_dtype(device, *args_inner, **kwargs)
# Replace functions in model_management module
model_management.unet_dtype = mps_safe_unet_dtype
model_management.vae_dtype = mps_safe_vae_dtype
model_management.text_encoder_dtype = mps_safe_text_encoder_dtype
# Set args for additional stability
args.force_fp32 = True
args.fp32_vae = True
args.fp32_unet = True
args.force_upcast_attention = True
# Performance settings: Tune these for speed vs stability
# Try uncommenting these one at a time for better speed:
args.lowvram = False # Set to False for FASTER (try this first!)
args.use_split_cross_attention = (
False # Set to False for even FASTER (might cause black images)
)
lowvram_status = "enabled" if args.lowvram else "disabled (faster)"
split_attn_status = (
"enabled" if args.use_split_cross_attention else "disabled (faster)"
)
print(" ✓ Enabled global fp32 dtype enforcement (monkey-patched)")
print(" ✓ Enabled MPS fallback mode")
print(f" ✓ lowvram: {lowvram_status}, split-cross-attention: {split_attn_status}")
else:
# Not MPS - likely ZeroGPU or other CUDA environment
# CUDA optimizations (bfloat16) are handled automatically by ComfyUI's model_management
print(f"PyTorch {torch.__version__} loaded")
print(" ℹ️ CUDA optimizations will be applied when GPU becomes available")
# Add all the models that load a safetensors file
model_loaders = [checkpointloadersimple_4, checkpointloadersimple_artistic]
# Check which models are valid and how to best load them
valid_models = [
getattr(loader[0], "patcher", loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict)
and not isinstance(getattr(loader[0], "patcher", None), dict)
]
# Note: Commenting out pre-loading to GPU for ZeroGPU compatibility
# On ZeroGPU, CUDA is not available until inside @spaces.GPU decorator
# Models will be automatically loaded to GPU when first used
# model_management.load_models_gpu(valid_models)
# Apply torch.compile to diffusion models for 1.5-1.7× speedup
# Compilation happens once at startup (30-60s), then cached for fast inference
def _apply_torch_compile_optimizations():
"""Apply torch.compile to both pipeline models using ComfyUI's infrastructure"""
try:
from comfy_api.torch_helpers.torch_compile import set_torch_compile_wrapper
print("\n🔧 Applying torch.compile optimizations...")
# Compile standard pipeline model (DreamShaper 3.32)
standard_model = get_value_at_index(checkpointloadersimple_4, 0)
set_torch_compile_wrapper(
model=standard_model,
backend="inductor",
mode="reduce-overhead", # Best for iterative sampling
fullgraph=True, # Now possible: timestep_embedding fixed + no progress hooks
dynamic=True, # Support all sizes (512-1024, step 64) with one kernel
keys=["diffusion_model"], # Compile UNet only
)
print(" ✓ Compiled standard pipeline diffusion model")
# Compile artistic pipeline model (DreamShaper 6.31)
artistic_model = get_value_at_index(checkpointloadersimple_artistic, 0)
set_torch_compile_wrapper(
model=artistic_model,
backend="inductor",
mode="reduce-overhead",
fullgraph=True, # Now possible: timestep_embedding fixed + no progress hooks
dynamic=True, # Support all sizes (512-1024, step 64) with one kernel
keys=["diffusion_model"],
)
print(" ✓ Compiled artistic pipeline diffusion model")
print("✅ torch.compile optimizations applied successfully!\n")
except Exception as e:
print(f"⚠️ torch.compile optimization failed: {e}")
print(" Continuing without compilation (slower but functional)\n")
# torch.compile DISABLED: Multiple device access issues in ComfyUI codebase
# Issues found:
# 1. comfy/ldm/modules/diffusionmodules/util.py - timestep_embedding (FIXED with .to())
# 2. comfy_extras/nodes_freelunch.py:94 - hsp.device check in output_block_patch
# With fullgraph=True, compilation traces too deep and hits these ConstantVariable errors
# App still uses bfloat16 optimization for 1.3-1.5× speedup
print("ℹ️ torch.compile disabled (ComfyUI device access incompatibilities)")
print(" App uses bfloat16 + VAE tiling + cache clearing for optimization")
@spaces.GPU(duration=60)
def generate_qr_code_unified(
prompt: str,
text_input: str,
input_type: str = "URL",
image_size: int = 512,
border_size: int = 4,
error_correction: str = "Medium (15%)",
module_size: int = 12,
module_drawer: str = "Square",
use_custom_seed: bool = False,
seed: int = 0,
pipeline: str = "standard",
enable_upscale: bool = False,
freeu_b1: float = 1.4,
freeu_b2: float = 1.3,
freeu_s1: float = 0.0,
freeu_s2: float = 1.3,
enable_sag: bool = True,
sag_scale: float = 0.5,
sag_blur_sigma: float = 1.5,
controlnet_strength_first: float = 0.45,
controlnet_strength_final: float = 0.7,
controlnet_strength_standard_first: float = 0.45,
controlnet_strength_standard_final: float = 1.0,
progress=gr.Progress(),
):
# Only manipulate the text if it's a URL input type
qr_text = text_input
if input_type == "URL":
if "https://" in qr_text:
qr_text = qr_text.replace("https://", "")
if "http://" in qr_text:
qr_text = qr_text.replace("http://", "")
# Use custom seed or random
actual_seed = seed if use_custom_seed else random.randint(1, 2**64)
with torch.inference_mode():
if pipeline == "standard":
yield from _pipeline_standard(
prompt,
qr_text,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
actual_seed,
enable_upscale,
controlnet_strength_standard_first,
controlnet_strength_standard_final,
progress,
)
else: # artistic
yield from _pipeline_artistic(
prompt,
qr_text,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
actual_seed,
enable_upscale,
freeu_b1,
freeu_b2,
freeu_s1,
freeu_s2,
enable_sag,
sag_scale,
sag_blur_sigma,
controlnet_strength_first,
controlnet_strength_final,
progress,
)
def generate_standard_qr(
prompt: str,
text_input: str,
input_type: str = "URL",
image_size: int = 512,
border_size: int = 4,
error_correction: str = "Medium (15%)",
module_size: int = 12,
module_drawer: str = "Square",
use_custom_seed: bool = False,
seed: int = 0,
enable_upscale: bool = False,
enable_freeu: bool = False,
controlnet_strength_standard_first: float = 0.45,
controlnet_strength_standard_final: float = 1.0,
progress=gr.Progress(),
):
"""Wrapper function for standard QR generation"""
# Get actual seed used (custom or random)
actual_seed = seed if use_custom_seed else random.randint(1, 2**64)
# Create settings JSON once
settings_dict = {
"pipeline": "standard",
"prompt": prompt,
"text_input": text_input,
"input_type": input_type,
"image_size": image_size,
"border_size": border_size,
"error_correction": error_correction,
"module_size": module_size,
"module_drawer": module_drawer,
"seed": actual_seed,
"use_custom_seed": True,
"enable_upscale": enable_upscale,
"enable_freeu": enable_freeu,
"controlnet_strength_standard_first": controlnet_strength_standard_first,
"controlnet_strength_standard_final": controlnet_strength_standard_final,
}
settings_json = generate_settings_json(settings_dict)
# Generate QR and yield progressive results
generator = generate_qr_code_unified(
prompt,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
use_custom_seed,
seed,
pipeline="standard",
enable_upscale=enable_upscale,
controlnet_strength_standard_first=controlnet_strength_standard_first,
controlnet_strength_standard_final=controlnet_strength_standard_final,
progress=progress,
)
final_image = None
final_status = None
for image, status in generator:
final_image = image
final_status = status
# Show progressive updates but don't show accordion yet
yield (image, status, gr.update(), gr.update())
# After all steps complete, show the accordion with JSON
if final_image is not None:
yield (
final_image,
final_status,
gr.update(value=settings_json), # Update textbox content
gr.update(visible=True), # Make accordion visible only at the end
)
def generate_artistic_qr(
prompt: str,
text_input: str,
input_type: str = "URL",
image_size: int = 512,
border_size: int = 4,
error_correction: str = "Medium (15%)",
module_size: int = 12,
module_drawer: str = "Square",
use_custom_seed: bool = False,
seed: int = 0,
enable_upscale: bool = True,
enable_freeu: bool = True,
freeu_b1: float = 1.4,
freeu_b2: float = 1.3,
freeu_s1: float = 0.0,
freeu_s2: float = 1.3,
enable_sag: bool = True,
sag_scale: float = 0.5,
sag_blur_sigma: float = 0.5,
controlnet_strength_first: float = 0.45,
controlnet_strength_final: float = 0.70,
progress=gr.Progress(),
):
"""Wrapper function for artistic QR generation with FreeU and SAG parameters"""
# Get actual seed used (custom or random)
actual_seed = seed if use_custom_seed else random.randint(1, 2**64)
# Create settings JSON once
settings_dict = {
"pipeline": "artistic",
"prompt": prompt,
"text_input": text_input,
"input_type": input_type,
"image_size": image_size,
"border_size": border_size,
"error_correction": error_correction,
"module_size": module_size,
"module_drawer": module_drawer,
"seed": actual_seed,
"use_custom_seed": True,
"enable_upscale": enable_upscale,
"enable_freeu": enable_freeu,
"freeu_b1": freeu_b1,
"freeu_b2": freeu_b2,
"freeu_s1": freeu_s1,
"freeu_s2": freeu_s2,
"enable_sag": enable_sag,
"sag_scale": sag_scale,
"sag_blur_sigma": sag_blur_sigma,
"controlnet_strength_first": controlnet_strength_first,
"controlnet_strength_final": controlnet_strength_final,
}
settings_json = generate_settings_json(settings_dict)
# Generate QR and yield progressive results
generator = generate_qr_code_unified(
prompt,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
use_custom_seed,
seed,
pipeline="artistic",
enable_upscale=enable_upscale,
freeu_b1=freeu_b1,
freeu_b2=freeu_b2,
freeu_s1=freeu_s1,
freeu_s2=freeu_s2,
enable_sag=enable_sag,
sag_scale=sag_scale,
sag_blur_sigma=sag_blur_sigma,
controlnet_strength_first=controlnet_strength_first,
controlnet_strength_final=controlnet_strength_final,
progress=progress,
)
final_image = None
final_status = None
for image, status in generator:
final_image = image
final_status = status
# Show progressive updates but don't show accordion yet
yield (image, status, gr.update(), gr.update())
# After all steps complete, show the accordion with JSON
if final_image is not None:
yield (
final_image,
final_status,
gr.update(value=settings_json), # Update textbox content
gr.update(visible=True), # Make accordion visible only at the end
)
# Helper functions for shareable settings JSON
def generate_settings_json(params_dict: dict) -> str:
"""Generate a formatted JSON string from parameters dictionary"""
try:
return json.dumps(params_dict, indent=2, ensure_ascii=False)
except Exception as e:
return json.dumps({"error": f"Failed to generate JSON: {str(e)}"}, indent=2)
def parse_settings_json(json_string: str) -> dict:
"""Parse JSON string and return parameters dictionary with validation"""
try:
if not json_string or not json_string.strip():
return {}
params = json.loads(json_string)
if not isinstance(params, dict):
return {}
return params
except json.JSONDecodeError as e:
return {"error": f"Invalid JSON: {str(e)}"}
except Exception as e:
return {"error": f"Failed to parse JSON: {str(e)}"}
def load_settings_from_json_standard(json_string: str):
"""Load settings from JSON for Standard pipeline"""
try:
params = json.loads(json_string)
# Validate pipeline type
pipeline = params.get(
"pipeline", "standard"
) # Default to standard for backward compatibility
if pipeline != "standard":
error_msg = f"❌ Error: You're trying to load {pipeline.upper()} pipeline settings into the STANDARD pipeline. Please use the correct tab."
# Return empty updates for all fields + error message + make status visible
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=error_msg, visible=True),
)
# Extract parameters with defaults
prompt = params.get("prompt", "")
text_input = params.get("text_input", "")
input_type = params.get("input_type", "URL")
image_size = params.get("image_size", 512)
border_size = params.get("border_size", 4)
error_correction = params.get("error_correction", "Medium (15%)")
module_size = params.get("module_size", 12)
module_drawer = params.get("module_drawer", "Square")
use_custom_seed = params.get("use_custom_seed", True)
seed = params.get("seed", 718313)
enable_upscale = params.get("enable_upscale", False)
enable_freeu = params.get("enable_freeu", False)
controlnet_strength_standard_first = params.get(
"controlnet_strength_standard_first", 0.45
)
controlnet_strength_standard_final = params.get(
"controlnet_strength_standard_final", 1.0
)
success_msg = "✅ Settings loaded successfully!"
return (
prompt,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
use_custom_seed,
seed,
enable_upscale,
enable_freeu,
controlnet_strength_standard_first,
controlnet_strength_standard_final,
gr.update(value=success_msg, visible=True),
)
except json.JSONDecodeError as e:
error_msg = f"❌ Invalid JSON format: {str(e)}"
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=error_msg, visible=True),
)
except Exception as e:
error_msg = f"❌ Error loading settings: {str(e)}"
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=error_msg, visible=True),
)
def load_settings_from_json_artistic(json_string: str):
"""Load settings from JSON for Artistic pipeline"""
try:
params = json.loads(json_string)
# Validate pipeline type
pipeline = params.get(
"pipeline", "artistic"
) # Default to artistic for backward compatibility
if pipeline != "artistic":
error_msg = f"❌ Error: You're trying to load {pipeline.upper()} pipeline settings into the ARTISTIC pipeline. Please use the correct tab."
# Return empty updates for all fields + error message + make status visible
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=error_msg, visible=True),
)
# Extract parameters with defaults
prompt = params.get("prompt", "")
text_input = params.get("text_input", "")
input_type = params.get("input_type", "URL")
image_size = params.get("image_size", 704)
border_size = params.get("border_size", 6)
error_correction = params.get("error_correction", "High (30%)")
module_size = params.get("module_size", 16)
module_drawer = params.get("module_drawer", "Square")
use_custom_seed = params.get("use_custom_seed", True)
seed = params.get("seed", 718313)
enable_upscale = params.get("enable_upscale", True)
enable_freeu = params.get("enable_freeu", True)
freeu_b1 = params.get("freeu_b1", 1.4)
freeu_b2 = params.get("freeu_b2", 1.3)
freeu_s1 = params.get("freeu_s1", 0.0)
freeu_s2 = params.get("freeu_s2", 1.3)
enable_sag = params.get("enable_sag", True)
sag_scale = params.get("sag_scale", 0.5)
sag_blur_sigma = params.get("sag_blur_sigma", 0.5)
controlnet_strength_first = params.get("controlnet_strength_first", 0.45)
controlnet_strength_final = params.get("controlnet_strength_final", 0.7)
success_msg = "✅ Settings loaded successfully!"
return (
prompt,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
use_custom_seed,
seed,
enable_upscale,
enable_freeu,
freeu_b1,
freeu_b2,
freeu_s1,
freeu_s2,
enable_sag,
sag_scale,
sag_blur_sigma,
controlnet_strength_first,
controlnet_strength_final,
gr.update(value=success_msg, visible=True),
)
except json.JSONDecodeError as e:
error_msg = f"❌ Invalid JSON format: {str(e)}"
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=error_msg, visible=True),
)
except Exception as e:
error_msg = f"❌ Error loading settings: {str(e)}"
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=error_msg, visible=True),
)
def add_noise_to_border_only(
image_tensor, seed: int, border_size: int, image_size: int, module_size: int = 12
):
"""
Add QR-like cubic patterns ONLY to the border region of a QR code image.
Creates black squares that resemble QR modules for a smooth transition.
The density of border cubics automatically matches the QR code interior density.
Args:
image_tensor: ComfyUI image tensor (batch, height, width, channels) with values 0-1
seed: Random seed for reproducible noise
border_size: Border size in QR modules (from QR generation settings)
image_size: Image size in pixels
module_size: Size of QR modules in pixels (for cubic pattern)
Returns:
Modified tensor with QR-like cubic patterns in border region
"""
# Early return if no border
if border_size == 0:
return image_tensor
# Convert to numpy for manipulation
img_np = image_tensor.cpu().numpy()
# Set random seed for reproducibility (ensure it's within numpy's valid range)
np.random.seed(seed % (2**32))
# Work with first image in batch
img = img_np[0] # (height, width, channels)
height, width, channels = img.shape
# Calculate border region in pixels using exact QR parameters
border_thickness = border_size * module_size # Exact border size in pixels
# Create border mask (1 for border region, 0 for QR code interior)
border_mask = np.zeros((height, width), dtype=bool)
# Top border
border_mask[0:border_thickness, :] = True
# Bottom border
border_mask[height - border_thickness : height, :] = True
# Left border
border_mask[:, 0:border_thickness] = True
# Right border
border_mask[:, width - border_thickness : width] = True
# Only apply to white/light areas in the border (threshold > 240)
img_255 = (img * 255).astype(np.uint8)
white_mask = np.all(img_255 > 240, axis=-1)
# Combine: only border AND white areas
final_mask = border_mask & white_mask
# Calculate QR code interior density to determine border cubic density
interior_mask = ~border_mask # Inverse of border = QR interior
interior_pixels = img_255[interior_mask][:, 0] # Get first channel (grayscale)
black_count = (interior_pixels < 128).sum() # Count black pixels (< 128)
total_count = len(interior_pixels)
qr_density = float(black_count) / float(total_count) if total_count > 0 else 0.5
# Use QR interior density as probability for placing border cubics
# This creates a natural transition matching the QR pattern density
# Generate QR-like cubic pattern noise
# Create a grid based on module_size
for y in range(0, height, module_size):
for x in range(0, width, module_size):
# Check if this module position is mostly in the border area
y_end = min(y + module_size, height)
x_end = min(x + module_size, width)
# Count how many pixels in this module are in the final_mask
module_region = final_mask[y:y_end, x:x_end]
# If at least 50% of the module is in the border, we can place a cubic here
if module_region.sum() > (module_size * module_size * 0.5):
# Randomly decide to place a black cubic based on QR interior density
if np.random.random() < qr_density:
# Place a black square (cubic) - set all channels to 0 (black)
for c in range(channels):
img[y:y_end, x:x_end, c] = 0
# Put modified image back into batch array
img_np[0] = img
# Convert back to tensor
return torch.from_numpy(img_np).to(image_tensor.device)
def _pipeline_standard(
prompt: str,
qr_text: str,
input_type: str,
image_size: int,
border_size: int,
error_correction: str,
module_size: int,
module_drawer: str,
seed: int,
enable_upscale: bool = False,
controlnet_strength_first: float = 0.45,
controlnet_strength_final: float = 1.0,
gr_progress=None,
):
emptylatentimage_5 = emptylatentimage.generate(
width=image_size, height=image_size, batch_size=1
)
cliptextencode_6 = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(checkpointloadersimple_4, 1),
)
cliptextencode_7 = cliptextencode.encode(
text="ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, closed eyes, text, logo",
clip=get_value_at_index(checkpointloadersimple_4, 1),
)
controlnetloader_10 = controlnetloader.load_controlnet(
control_net_name="models/control_v1p_sd15_brightness.safetensors"
)
controlnetloader_12 = controlnetloader.load_controlnet(
control_net_name="control_v11f1e_sd15_tile_fp16.safetensors"
)
# Set protocol based on input type: None for plain text, Https for URLs
qr_protocol = "None" if input_type == "Plain Text" else "Https"
# Test progress bar at the very beginning
print(f"DEBUG: gr_progress type: {type(gr_progress)}")
print(f"DEBUG: gr_progress value: {gr_progress}")
if gr_progress:
print("DEBUG: Calling gr_progress(0.0)")
gr_progress(0.0, desc="Starting QR generation...")
print("DEBUG: Called gr_progress(0.0) successfully")
try:
comfy_qr_by_module_size_15 = comfy_qr_by_module_size.generate_qr(
protocol=qr_protocol,
text=qr_text,
module_size=module_size,
max_image_size=image_size,
fill_hexcolor="#000000",
back_hexcolor="#FFFFFF",
error_correction=error_correction,
border=border_size,
module_drawer=module_drawer,
)
except RuntimeError as e:
error_msg = (
f"Error generating QR code: {str(e)}\n"
"Try with a shorter text, increase the image size, or decrease the border size, module size, and error correction level under Change Settings Manually."
)
yield None, error_msg
return
# 1) Yield the base QR image as the first intermediate result
base_qr_tensor = get_value_at_index(comfy_qr_by_module_size_15, 0)
base_qr_np = (base_qr_tensor.cpu().numpy() * 255).astype(np.uint8)
base_qr_np = base_qr_np[0]
base_qr_pil = Image.fromarray(base_qr_np)
msg = "Generated base QR pattern… enhancing with AI (step 1/3)"
log_progress(msg, gr_progress, 0.05)
yield base_qr_pil, msg
emptylatentimage_17 = emptylatentimage.generate(
width=image_size * 2, height=image_size * 2, batch_size=1
)
controlnetloader_19 = controlnetloader.load_controlnet(
control_net_name="control_v11f1e_sd15_tile_fp16.safetensors"
)
# Simple stage update for first pass
log_progress("First pass - preparing controlnets...", gr_progress, 0.1)
for q in range(1):
controlnetapplyadvanced_11 = controlnetapplyadvanced.apply_controlnet(
strength=controlnet_strength_first,
start_percent=0,
end_percent=1,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
control_net=get_value_at_index(controlnetloader_10, 0),
image=get_value_at_index(comfy_qr_by_module_size_15, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
tilepreprocessor_14 = tilepreprocessor.execute(
pyrUp_iters=3,
resolution=image_size,
image=get_value_at_index(comfy_qr_by_module_size_15, 0),
)
controlnetapplyadvanced_13 = controlnetapplyadvanced.apply_controlnet(
strength=controlnet_strength_first,
start_percent=0,
end_percent=1,
positive=get_value_at_index(controlnetapplyadvanced_11, 0),
negative=get_value_at_index(controlnetapplyadvanced_11, 1),
control_net=get_value_at_index(controlnetloader_12, 0),
image=get_value_at_index(tilepreprocessor_14, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
ksampler_3 = ksampler.sample(
seed=seed,
steps=20,
cfg=7,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(checkpointloadersimple_4, 0),
positive=get_value_at_index(controlnetapplyadvanced_13, 0),
negative=get_value_at_index(controlnetapplyadvanced_13, 1),
latent_image=get_value_at_index(emptylatentimage_5, 0),
)
# Yield progress update after first sampling completes
msg = "First pass sampling complete... decoding image"
log_progress(msg, gr_progress, 0.4)
yield base_qr_pil, msg # Yield with same image as before
# Calculate optimal tile size for this image - disable for now
# tile_size, overlap = calculate_vae_tile_size(image_size)
# Small image, use standard decode (faster)
vaedecode_8 = vaedecode.decode(
samples=get_value_at_index(ksampler_3, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
# 2) Yield the first decoded image as a second intermediate result
mid_tensor = get_value_at_index(vaedecode_8, 0)
mid_np = (mid_tensor.cpu().numpy() * 255).astype(np.uint8)
mid_np = mid_np[0]
mid_pil = Image.fromarray(mid_np)
msg = "First enhancement pass complete (step 2/3)… refining details"
log_progress(msg, gr_progress, 0.5)
yield mid_pil, msg
# Clear cache before second pass to free memory
model_management.soft_empty_cache()
# Simple stage update for second pass
log_progress("Second pass (refinement)...", gr_progress, 0.5)
controlnetapplyadvanced_20 = controlnetapplyadvanced.apply_controlnet(
strength=controlnet_strength_final,
start_percent=0,
end_percent=1,
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
control_net=get_value_at_index(controlnetloader_19, 0),
image=get_value_at_index(vaedecode_8, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
ksampler_18 = ksampler.sample(
seed=seed + 1,
steps=20,
cfg=7,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(checkpointloadersimple_4, 0),
positive=get_value_at_index(controlnetapplyadvanced_20, 0),
negative=get_value_at_index(controlnetapplyadvanced_20, 1),
latent_image=get_value_at_index(emptylatentimage_17, 0),
)
# Yield progress update after second sampling completes
msg = "Second pass sampling complete... decoding final image"
log_progress(msg, gr_progress, 0.8)
yield mid_pil, msg # Yield with previous image
# Second pass is always 2x original, calculate based on doubled size
tile_size_2x, overlap_2x = calculate_vae_tile_size(image_size * 2)
if tile_size_2x is not None:
vaedecode_21 = vaedecodetiled.decode(
samples=get_value_at_index(ksampler_18, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
tile_size=tile_size_2x,
overlap=overlap_2x,
)
else:
vaedecode_21 = vaedecode.decode(
samples=get_value_at_index(ksampler_18, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
# 3) Optionally upscale if enabled
if enable_upscale:
# Show pre-upscale result
pre_upscale_tensor = get_value_at_index(vaedecode_21, 0)
pre_upscale_np = (pre_upscale_tensor.cpu().numpy() * 255).astype(np.uint8)
pre_upscale_np = pre_upscale_np[0]
pre_upscale_pil = Image.fromarray(pre_upscale_np)
msg = "Enhancement complete (step 3/4)... upscaling image"
log_progress(msg, gr_progress, 0.9)
yield pre_upscale_pil, msg
# Upscale the final image (load model on-demand)
upscale_model = get_upscale_model()
upscaled = imageupscalewithmodel.upscale(
upscale_model=get_value_at_index(upscale_model, 0),
image=get_value_at_index(vaedecode_21, 0),
)
image_tensor = get_value_at_index(upscaled, 0)
image_np = (image_tensor.cpu().numpy() * 255).astype(np.uint8)
image_np = image_np[0]
pil_image = Image.fromarray(image_np)
msg = "No errors, all good! Final QR art generated and upscaled. (step 4/4)"
log_progress(msg, gr_progress, 1.0)
yield (pil_image, msg)
else:
# No upscaling
image_tensor = get_value_at_index(vaedecode_21, 0)
image_np = (image_tensor.cpu().numpy() * 255).astype(np.uint8)
image_np = image_np[0]
pil_image = Image.fromarray(image_np)
msg = "No errors, all good! Final QR art generated."
log_progress(msg, gr_progress, 1.0)
yield pil_image, msg
def _pipeline_artistic(
prompt: str,
qr_text: str,
input_type: str,
image_size: int,
border_size: int,
error_correction: str,
module_size: int,
module_drawer: str,
seed: int,
enable_upscale: bool = True,
freeu_b1: float = 1.4,
freeu_b2: float = 1.3,
freeu_s1: float = 0.0,
freeu_s2: float = 1.3,
enable_sag: bool = True,
sag_scale: float = 0.5,
sag_blur_sigma: float = 0.5,
controlnet_strength_first: float = 0.45,
controlnet_strength_final: float = 0.7,
gr_progress=None,
):
# Generate QR code
qr_protocol = "None" if input_type == "Plain Text" else "Https"
try:
comfy_qr = comfy_qr_by_module_size.generate_qr(
protocol=qr_protocol,
text=qr_text,
module_size=module_size,
max_image_size=image_size,
fill_hexcolor="#000000",
back_hexcolor="#FFFFFF",
error_correction=error_correction,
border=border_size,
module_drawer=module_drawer,
)
except RuntimeError as e:
error_msg = (
f"Error generating QR code: {str(e)}\n"
"Try with a shorter text, increase the image size, or decrease the border size, module size, and error correction level under Change Settings Manually."
)
yield None, error_msg
return
# Show the base QR code
base_qr_tensor = get_value_at_index(comfy_qr, 0)
base_qr_np = (base_qr_tensor.cpu().numpy() * 255).astype(np.uint8)
base_qr_np = base_qr_np[0]
base_qr_pil = Image.fromarray(base_qr_np)
# Calculate total steps based on border and upscale
total_steps = 3 # Base: first pass, final refinement, final result
if border_size > 0:
total_steps += 1 # Add border noise step
if enable_upscale:
total_steps += 1 # Add upscale step
current_step = 1
# Only add noise if there's a border (border_size > 0)
if border_size > 0:
msg = f"Generated base QR pattern... adding QR-like cubics to border (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 0.05)
yield (base_qr_pil, msg)
current_step += 1
# Add QR-like cubic patterns ONLY to border region (extends QR structure into border)
# Density automatically matches QR code interior density for natural transition
qr_with_border_noise = add_noise_to_border_only(
get_value_at_index(comfy_qr, 0),
seed=seed + 100,
border_size=border_size,
image_size=image_size,
module_size=module_size, # Use same module size as QR code
)
# Show the noisy QR so you can see the border cubic pattern effect
noisy_qr_np = (qr_with_border_noise.cpu().numpy() * 255).astype(np.uint8)
noisy_qr_np = noisy_qr_np[0]
noisy_qr_pil = Image.fromarray(noisy_qr_np)
msg = f"Added QR-like cubics to border... enhancing with AI (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 0.1)
yield (noisy_qr_pil, msg)
current_step += 1
else:
# No border, skip noise
qr_with_border_noise = get_value_at_index(comfy_qr, 0)
msg = f"Generated base QR pattern (no border)... enhancing with AI (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 0.1)
yield (base_qr_pil, msg)
current_step += 1
# Generate latent image
latent_image = emptylatentimage.generate(
width=image_size, height=image_size, batch_size=1
)
# Encode text prompts
positive_prompt = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(checkpointloadersimple_artistic, 1),
)
negative_prompt = cliptextencode.encode(
text="ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, closed eyes, text, logo",
clip=get_value_at_index(checkpointloadersimple_artistic, 1),
)
# Load controlnets
brightness_controlnet = controlnetloader.load_controlnet(
control_net_name="models/control_v1p_sd15_brightness.safetensors"
)
tile_controlnet = controlnetloader.load_controlnet(
control_net_name="control_v11f1e_sd15_tile_fp16.safetensors"
)
# First ControlNet pass (using QR with border cubics)
controlnet_apply = controlnetapplyadvanced.apply_controlnet(
strength=controlnet_strength_first,
start_percent=0,
end_percent=1,
positive=get_value_at_index(positive_prompt, 0),
negative=get_value_at_index(negative_prompt, 0),
control_net=get_value_at_index(brightness_controlnet, 0),
image=qr_with_border_noise,
vae=get_value_at_index(checkpointloadersimple_artistic, 2),
)
# Tile preprocessor (using QR with border cubics)
tile_processed = tilepreprocessor.execute(
pyrUp_iters=3,
resolution=image_size,
image=qr_with_border_noise,
)
# Second ControlNet pass (using tile processed from QR with border cubics)
controlnet_apply = controlnetapplyadvanced.apply_controlnet(
strength=controlnet_strength_first,
start_percent=0,
end_percent=1,
positive=get_value_at_index(controlnet_apply, 0),
negative=get_value_at_index(controlnet_apply, 1),
control_net=get_value_at_index(tile_controlnet, 0),
image=get_value_at_index(tile_processed, 0),
vae=get_value_at_index(checkpointloadersimple_artistic, 2),
)
# Apply FreeU_V2 for enhanced quality (better detail, texture, and cleaner output)
base_model = get_value_at_index(checkpointloadersimple_artistic, 0)
freeu = FreeU_V2()
freeu_model = freeu.patch(
model=base_model,
b1=freeu_b1, # Backbone feature enhancement - customizable
b2=freeu_b2, # Backbone feature enhancement (layer 2) - customizable
s1=freeu_s1, # Skip connection dampening - customizable structure hiding
s2=freeu_s2, # Skip connection dampening (layer 2) - customizable scannability balance
)[0]
# Apply SAG (Self-Attention Guidance) for improved structural coherence (if enabled)
if enable_sag:
smoothed_energy = NODE_CLASS_MAPPINGS["SelfAttentionGuidance"]()
enhanced_model = smoothed_energy.patch(
model=freeu_model,
scale=sag_scale, # SAG guidance scale - customizable
blur_sigma=sag_blur_sigma, # Blur amount - customizable artistic blending
)[0]
else:
enhanced_model = freeu_model
# First sampling pass
log_progress("First pass - artistic sampling...", gr_progress, 0.2)
samples = ksampler.sample(
seed=seed,
steps=30,
cfg=7,
sampler_name="dpmpp_3m_sde",
scheduler="karras",
denoise=1,
model=enhanced_model, # Using FreeU + SAG enhanced model
positive=get_value_at_index(controlnet_apply, 0),
negative=get_value_at_index(controlnet_apply, 1),
latent_image=get_value_at_index(latent_image, 0),
)
# Yield progress update after first sampling completes
msg = f"First pass sampling complete... decoding image (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 0.4)
yield (noisy_qr_pil if border_size > 0 else base_qr_pil, msg)
# First decode with dynamic tiling - disable for now
# tile_size, overlap = calculate_vae_tile_size(image_size)
decoded = vaedecode.decode(
samples=get_value_at_index(samples, 0),
vae=get_value_at_index(checkpointloadersimple_artistic, 2),
)
# Show first pass result
first_pass_tensor = get_value_at_index(decoded, 0)
first_pass_np = (first_pass_tensor.cpu().numpy() * 255).astype(np.uint8)
first_pass_np = first_pass_np[0]
first_pass_pil = Image.fromarray(first_pass_np)
msg = f"First enhancement pass complete (step {current_step}/{total_steps})... final refinement pass"
log_progress(msg, gr_progress, 0.5)
yield (first_pass_pil, msg)
current_step += 1
# Clear cache before second pass to free memory
model_management.soft_empty_cache()
# Final ControlNet pass (second pass - refinement)
controlnet_apply_final = controlnetapplyadvanced.apply_controlnet(
strength=controlnet_strength_final,
start_percent=0,
end_percent=1,
positive=get_value_at_index(positive_prompt, 0),
negative=get_value_at_index(negative_prompt, 0),
control_net=get_value_at_index(tile_controlnet, 0),
image=get_value_at_index(decoded, 0),
vae=get_value_at_index(checkpointloadersimple_artistic, 2),
)
# Upscale latent
upscaled_latent = latentupscaleby.upscale(
upscale_method="area",
scale_by=2.0,
samples=get_value_at_index(samples, 0),
)
# Final sampling pass
log_progress("Second pass (refinement)...", gr_progress, 0.6)
final_samples = ksampler.sample(
seed=seed + 1,
steps=30,
cfg=7,
sampler_name="dpmpp_3m_sde",
scheduler="karras",
denoise=0.8,
model=enhanced_model, # Using FreeU + SAG enhanced model
positive=get_value_at_index(controlnet_apply_final, 0),
negative=get_value_at_index(controlnet_apply_final, 1),
latent_image=get_value_at_index(upscaled_latent, 0),
)
# Yield progress update after second sampling completes
msg = f"Second pass sampling complete... decoding final image (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 0.8)
yield (first_pass_pil, msg)
# Final decode with dynamic tiling
tile_size, overlap = calculate_vae_tile_size(image_size)
if tile_size is not None:
final_decoded = vaedecodetiled.decode(
samples=get_value_at_index(final_samples, 0),
vae=get_value_at_index(checkpointloadersimple_artistic, 2),
tile_size=tile_size,
overlap=overlap,
)
else:
final_decoded = vaedecode.decode(
samples=get_value_at_index(final_samples, 0),
vae=get_value_at_index(checkpointloadersimple_artistic, 2),
)
# Optionally upscale if enabled
if enable_upscale:
# Show result before upscaling
pre_upscale_tensor = get_value_at_index(final_decoded, 0)
pre_upscale_np = (pre_upscale_tensor.cpu().numpy() * 255).astype(np.uint8)
pre_upscale_np = pre_upscale_np[0]
pre_upscale_pil = Image.fromarray(pre_upscale_np)
msg = f"Final refinement complete (step {current_step}/{total_steps})... upscaling image"
log_progress(msg, gr_progress, 0.9)
yield (pre_upscale_pil, msg)
current_step += 1
# Upscale image with model (load model on-demand)
upscale_model = get_upscale_model()
upscaled = imageupscalewithmodel.upscale(
upscale_model=get_value_at_index(upscale_model, 0),
image=get_value_at_index(final_decoded, 0),
)
# Convert upscaled image to PIL Image and return
image_tensor = get_value_at_index(upscaled, 0)
image_np = (image_tensor.cpu().numpy() * 255).astype(np.uint8)
image_np = image_np[0]
final_image = Image.fromarray(image_np)
msg = f"No errors, all good! Final artistic QR code generated and upscaled. (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 1.0)
yield (final_image, msg)
else:
# No upscaling
image_tensor = get_value_at_index(final_decoded, 0)
image_np = (image_tensor.cpu().numpy() * 255).astype(np.uint8)
image_np = image_np[0]
final_image = Image.fromarray(image_np)
msg = f"No errors, all good! Final artistic QR code generated. (step {current_step}/{total_steps})"
log_progress(msg, gr_progress, 1.0)
yield (final_image, msg)
if __name__ == "__main__" and not os.environ.get("QR_TESTING_MODE"):
# Start your Gradio app with automatic cache cleanup
# delete_cache=(3600, 3600) means: check every hour and delete files older than 1 hour
with gr.Blocks(delete_cache=(3600, 3600)) as app:
# Add a title and description
gr.Markdown("# QR Code Art Generator")
gr.Markdown("""
This is an AI-powered QR code generator that creates artistic QR codes using Stable Diffusion 1.5 and ControlNet models.
The application uses a custom ComfyUI workflow to generate QR codes.
**Privacy Notice:** Generated images are automatically deleted after 1 hour.
Temporary files are checked and cleaned every hour. Download your QR codes promptly after generation.
### Tips:
- Use detailed prompts for better results
- Include style keywords like 'photorealistic', 'detailed', '8k'
- Choose **URL** mode for web links or **Plain Text** mode for VCARD, WiFi credentials, calendar events, etc.
- Try the examples below for inspiration
- **Copy/paste settings**: After generation, copy the JSON settings string that appears below the image and paste it into "Import Settings from JSON" to reproduce exact results or share with others
### Two Modes:
- **Artistic QR** (New pipeline, default): More artistic and creative results with upscaling (slower, more creative, less scannable)
- **Standard QR** (Old pipeline, more stable): Stable, accurate QR code generation (faster, more scannable, less creative)
### Note:
Selecting image_size more then 704 might fail to generate image when other users are trying app at the same time.
Feel free to share your suggestions or feedback on how to improve the app! Thanks!
""")
# Add tabs for different generation methods
with gr.Tabs():
# ARTISTIC QR TAB
with gr.TabItem("Artistic QR"):
with gr.Row():
with gr.Column():
# Add input type selector for artistic QR
artistic_input_type = gr.Radio(
choices=["URL", "Plain Text"],
value="URL",
label="Input Type",
info="URL: For web links (auto-removes https://). Plain Text: For VCARD, WiFi, calendar, location, etc. (no manipulation)",
)
# Add inputs for artistic QR
artistic_prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate (check examples below for inspiration)",
value="Enter your prompt here... For example: 'a beautiful sunset over mountains, photorealistic, detailed landscape'",
lines=3,
)
artistic_text_input = gr.Textbox(
label="QR Code Content",
placeholder="Enter URL or plain text",
value="Enter your URL or text here... For example: https://github.com",
lines=3,
)
# Import Settings section - separate accordion
with gr.Accordion("Import Settings from JSON", open=False):
gr.Markdown(
"Paste a settings JSON string (copied from a previous generation) to load all parameters at once."
)
import_json_input_artistic = gr.Textbox(
label="Paste Settings JSON",
placeholder='{"pipeline": "artistic", "prompt": "...", "seed": 718313, ...}',
lines=3,
)
import_status_artistic = gr.Textbox(
label="Import Status",
interactive=False,
visible=False,
lines=2,
)
with gr.Row():
load_settings_btn_artistic = gr.Button(
"Load Settings", variant="primary"
)
clear_json_btn_artistic = gr.Button(
"Clear", variant="secondary"
)
# Change Settings Manually - separate accordion
with gr.Accordion("Change Settings Manually", open=False):
# Add image size slider for artistic QR
artistic_image_size = gr.Slider(
minimum=512,
maximum=1024,
step=64,
value=704,
label="Image Size",
info="Base size of the generated image. Final output will be 2x this size (e.g., 704 → 1408) due to the two-step enhancement process. Higher values use more VRAM and take longer to process.",
)
# Add border size slider for artistic QR
artistic_border_size = gr.Slider(
minimum=0,
maximum=8,
step=1,
value=6,
label="QR Code Border Size",
info="Number of modules (squares) to use as border around the QR code. Higher values add more whitespace.",
)
# Add error correction dropdown for artistic QR
artistic_error_correction = gr.Dropdown(
choices=[
"Low (7%)",
"Medium (15%)",
"Quartile (25%)",
"High (30%)",
],
value="High (30%)",
label="Error Correction Level",
info="Higher error correction makes the QR code more scannable when damaged or obscured, but increases its size and complexity. High (30%) is recommended for artistic QR codes.",
)
# Add module size slider for artistic QR
artistic_module_size = gr.Slider(
minimum=4,
maximum=16,
step=1,
value=16,
label="QR Module Size",
info="Pixel width of the smallest QR code unit. Larger values improve readability but require a larger image size. 16 is a good starting point.",
)
# Add module drawer dropdown with style examples for artistic QR
artistic_module_drawer = gr.Dropdown(
choices=[
"Square",
"Gapped Square",
"Circle",
"Rounded",
"Vertical bars",
"Horizontal bars",
],
value="Square",
label="QR Code Style",
info="Select the style of the QR code modules (squares). See examples below. Different styles can give your QR code a unique look while maintaining scannability.",
)
# Add style examples with labels
gr.Markdown("### Style Examples:")
# First row of examples
with gr.Row():
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Square**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/square.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Gapped Square**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/gapped_square.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Circle**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/circle.png",
width=100,
show_label=False,
show_download_button=False,
)
# Second row of examples
with gr.Row():
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Rounded**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/rounded.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Vertical Bars**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/vertical-bars.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Horizontal Bars**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/horizontal-bars.png",
width=100,
show_label=False,
show_download_button=False,
)
# Add upscale checkbox
artistic_enable_upscale = gr.Checkbox(
label="Enable Upscaling",
value=True,
info="Enable upscaling with RealESRGAN for higher quality output (enabled by default for artistic pipeline)",
)
# Add seed controls for artistic QR
artistic_use_custom_seed = gr.Checkbox(
label="Use Custom Seed",
value=True,
info="Enable to use a specific seed for reproducible results",
)
artistic_seed = gr.Slider(
minimum=0,
maximum=2000000,
step=1,
value=718313,
label="Seed",
visible=True, # Initially visible since artistic_use_custom_seed=True
info="Seed value for reproducibility. Same seed with same settings will produce the same result.",
)
# FreeU Parameters
gr.Markdown("### FreeU Quality Enhancement")
enable_freeu_artistic = gr.Checkbox(
label="Enable FreeU",
value=True,
info="Enable FreeU quality enhancement (enabled by default for artistic pipeline)",
)
freeu_b1 = gr.Slider(
minimum=1.0,
maximum=1.6,
step=0.01,
value=1.4,
label="FreeU B1 (Backbone 1)",
info="Backbone feature enhancement for first layer. Higher values improve detail but may reduce blending. Range: 1.0-1.6, Default: 1.4",
)
freeu_b2 = gr.Slider(
minimum=1.0,
maximum=1.6,
step=0.01,
value=1.3,
label="FreeU B2 (Backbone 2)",
info="Backbone feature enhancement for second layer. Higher values improve texture. Range: 1.0-1.6, Default: 1.3",
)
freeu_s1 = gr.Slider(
minimum=0.0,
maximum=1.5,
step=0.01,
value=0.0,
label="FreeU S1 (Skip 1)",
info="Skip connection dampening for first layer. Lower values hide QR structure more. Range: 0.0-1.5, Default: 0.0",
)
freeu_s2 = gr.Slider(
minimum=0.0,
maximum=1.5,
step=0.01,
value=1.3,
label="FreeU S2 (Skip 2)",
info="Skip connection dampening for second layer. Balances scannability. Range: 0.0-1.5, Default: 1.3",
)
# SAG (Self-Attention Guidance) Parameters
gr.Markdown("### SAG (Self-Attention Guidance)")
enable_sag = gr.Checkbox(
label="Enable SAG",
value=True,
info="Enable Self-Attention Guidance for improved structural coherence and artistic blending",
)
sag_scale = gr.Slider(
minimum=0.0,
maximum=3.0,
step=0.1,
value=0.5,
label="SAG Scale",
info="Guidance strength. Higher values provide more structural coherence. Range: 0.0-3.0, Default: 0.5",
)
sag_blur_sigma = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.1,
value=0.5,
label="SAG Blur Sigma",
info="Blur amount for artistic blending. Higher values create softer, more artistic effects. Range: 0.0-5.0, Default: 0.5",
)
# ControlNet Strength Parameters
gr.Markdown(
"### ControlNet Strength (QR Code Preservation)"
)
gr.Markdown(
"**IMPORTANT:** Lower values preserve QR structure better (more scannable). Higher values create more artistic effects but may reduce scannability."
)
controlnet_strength_first = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.45,
label="First Pass Strength",
info="Controls how much the AI modifies the QR in the first pass. LOWER = more scannable, HIGHER = more artistic. Try 0.30-0.40 for better scannability. Default: 0.45",
)
controlnet_strength_final = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.7,
label="Final Pass Strength",
info="Controls how much the AI modifies the QR in the refinement pass. LOWER = preserves QR structure, HIGHER = more creative. Try 0.55-0.65 for balance. Default: 0.70",
)
# The generate button for artistic QR
artistic_generate_btn = gr.Button(
"Generate Artistic QR", variant="primary"
)
with gr.Column():
# The output image for artistic QR
artistic_output_image = gr.Image(
label="Generated Artistic QR Code"
)
artistic_error_message = gr.Textbox(
label="Status / Errors",
interactive=False,
lines=3,
)
# Wrap settings output in accordion (initially hidden)
with gr.Accordion(
"Shareable Settings (JSON)", open=True, visible=False
) as settings_accordion_artistic:
settings_output_artistic = gr.Textbox(
label="Copy this JSON to share your exact settings",
interactive=True,
lines=5,
show_copy_button=True,
)
# When clicking the button, it will trigger the artistic function
artistic_generate_btn.click(
fn=generate_artistic_qr,
inputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
artistic_enable_upscale,
enable_freeu_artistic,
freeu_b1,
freeu_b2,
freeu_s1,
freeu_s2,
enable_sag,
sag_scale,
sag_blur_sigma,
controlnet_strength_first,
controlnet_strength_final,
],
outputs=[
artistic_output_image,
artistic_error_message,
settings_output_artistic,
settings_accordion_artistic,
],
)
# Load Settings button event handler
load_settings_btn_artistic.click(
fn=load_settings_from_json_artistic,
inputs=[import_json_input_artistic],
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
artistic_enable_upscale,
enable_freeu_artistic,
freeu_b1,
freeu_b2,
freeu_s1,
freeu_s2,
enable_sag,
sag_scale,
sag_blur_sigma,
controlnet_strength_first,
controlnet_strength_final,
import_status_artistic,
],
)
# Clear button event handler for artistic tab
clear_json_btn_artistic.click(
fn=lambda: ("", gr.update(visible=False)),
inputs=[],
outputs=[import_json_input_artistic, import_status_artistic],
)
# Seed slider visibility toggle for artistic tab
artistic_use_custom_seed.change(
fn=lambda x: gr.update(visible=x),
inputs=[artistic_use_custom_seed],
outputs=[artistic_seed],
)
# Custom Examples Gallery with Images
gr.Markdown("### Featured Examples")
gr.Markdown(
"Click 'Load Settings' under any example to populate the form with those exact settings"
)
# First row (3 images)
with gr.Row():
# Example 1: Japanese Temple
with gr.Column(scale=1):
ex1_img = gr.Image(
"examples/artistic/japanese_temple.jpg",
label="Japanese Temple",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex1_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Example 2: Sunset Mountains
with gr.Column(scale=1):
ex2_img = gr.Image(
"examples/artistic/sunset_mountains.jpg",
label="Sunset Mountains",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex2_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Example 3: Roman City
with gr.Column(scale=1):
ex3_img = gr.Image(
"examples/artistic/roman_city.jpg",
label="Roman City",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex3_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Second row (3 images)
with gr.Row():
# Example 4: Neapolitan Pizza
with gr.Column(scale=1):
ex4_img = gr.Image(
"examples/artistic/neapolitan_pizza.webp",
label="Neapolitan Pizza",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex4_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Example 5: Poker Chips
with gr.Column(scale=1):
ex5_img = gr.Image(
"examples/artistic/poker_chips.webp",
label="Poker Chips",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex5_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Example 6: Underwater Fish
with gr.Column(scale=1):
ex6_img = gr.Image(
"examples/artistic/underwater_fish.webp",
label="Underwater Fish",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex6_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Third row (3 images)
with gr.Row():
# Example 7: Mediterranean Garden
with gr.Column(scale=1):
ex7_img = gr.Image(
"examples/artistic/mediterranean_garden.jpg",
label="Mediterranean Garden",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex7_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Example 8: Rice Fields
with gr.Column(scale=1):
ex8_img = gr.Image(
"examples/artistic/rice_fields.jpg",
label="Rice Fields",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex8_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Example 9: Cyberpunk City
with gr.Column(scale=1):
ex9_img = gr.Image(
"examples/artistic/cyberpunk_city.webp",
label="Cyberpunk City",
show_label=True,
interactive=False,
show_download_button=False,
height=280,
)
ex9_btn = gr.Button(
"Load Settings", size="sm", variant="secondary"
)
# Load settings button handlers
# Ex1: Japanese Temple
ex1_btn.click(
fn=lambda: (
"some clothes spread on ropes, Japanese girl sits inside in the middle of the image, few sakura flowers, realistic, great details, out in the open air sunny day realistic, great details, absence of people, Detailed and Intricate, CGI, Photoshoot, rim light, 8k, 16k, ultra detail",
"https://www.google.com",
"URL",
640,
6,
"Medium (15%)",
14,
"Square",
True,
718313,
0.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex2: Sunset Mountains
ex2_btn.click(
fn=lambda: (
"a beautiful sunset over mountains, photorealistic, detailed landscape, golden hour, dramatic lighting, 8k, ultra detailed",
"https://github.com",
"URL",
704,
6,
"High (30%)",
16,
"Square",
True,
718313,
0.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex3: Roman City
ex3_btn.click(
fn=lambda: (
"aerial bird view of ancient Roman city, cobblestone streets and pathways forming intricate patterns, vintage illustration style, sepia tones, aged parchment look, detailed architecture, 8k, ultra detailed",
"WIFI:T:WPA;S:MyNetwork;P:MyPassword123;;",
"Plain Text",
832,
6,
"High (30%)",
16,
"Square",
True,
718313,
0.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex4: Neapolitan Pizza
ex4_btn.click(
fn=lambda: (
"artisan Neapolitan pizza on rustic wooden board, fresh basil leaves scattered on top and around, oregano sprinkled, flour dust particles floating in air, melted mozzarella with char marks, traditional Italian pizzeria ambiance, warm brick oven glow in background, detailed food photography, photorealistic, 8k, ultra detailed",
"https://www.pizzamaking.com",
"URL",
704,
6,
"High (30%)",
16,
"Square",
True,
856749,
2.0,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex5: Poker Chips
ex5_btn.click(
fn=lambda: (
"some cards on poker tale, realistic, great details, realistic, great details,absence of people, Detailed and Intricate, CGI, Photoshoot,rim light, 8k, 16k, ultra detail",
"https://store.steampowered.com",
"URL",
768,
6,
"High (30%)",
16,
"Square",
True,
718313,
2.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex6: Underwater Fish
ex6_btn.click(
fn=lambda: (
"underwater scene with tropical fish, coral reef, rays of sunlight penetrating water, vibrant colors, detailed marine life, photorealistic, 8k, ultra detailed",
"https://www.reddit.com",
"URL",
704,
6,
"High (30%)",
16,
"Square",
True,
718313,
0.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex7: Mediterranean Garden
ex7_btn.click(
fn=lambda: (
"ancient stone sundial in Mediterranean garden, olive trees, dappled sunlight through leaves, weathered stone texture, peaceful afternoon scene, photorealistic, detailed, 8k, ultra detailed",
"BEGIN:VEVENT\\nSUMMARY:Team Meeting\\nDTSTART:20251115T140000Z\\nDTEND:20251115T150000Z\\nLOCATION:Conference Room A\\nEND:VEVENT",
"Plain Text",
1024,
6,
"High (30%)",
14,
"Square",
True,
413468,
0.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex8: Rice Fields
ex8_btn.click(
fn=lambda: (
"aerial view of terraced rice fields on mountainside, winding pathways between green paddies, Asian countryside, bird's eye perspective, detailed landscape, golden hour lighting, photorealistic, 8k, ultra detailed",
"geo:37.7749,-122.4194",
"Plain Text",
704,
6,
"High (30%)",
16,
"Square",
True,
962359,
0.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# Ex9: Cyberpunk City
ex9_btn.click(
fn=lambda: (
"futuristic cityscape with flying cars and neon lights, cyberpunk style, detailed architecture, night scene, 8k, ultra detailed",
"https://linkedin.com",
"URL",
704,
6,
"High (30%)",
16,
"Square",
True,
718313,
1.5,
),
outputs=[
artistic_prompt_input,
artistic_text_input,
artistic_input_type,
artistic_image_size,
artistic_border_size,
artistic_error_correction,
artistic_module_size,
artistic_module_drawer,
artistic_use_custom_seed,
artistic_seed,
sag_blur_sigma,
],
)
# STANDARD QR TAB
with gr.TabItem("Standard QR"):
with gr.Row():
with gr.Column():
# Add input type selector
input_type = gr.Radio(
choices=["URL", "Plain Text"],
value="URL",
label="Input Type",
info="URL: For web links (auto-removes https://). Plain Text: For VCARD, WiFi, calendar, location, etc. (no manipulation)",
)
# Add inputs
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate (check examples below for inspiration)",
value="Enter your prompt here... For example: 'a beautiful sunset over mountains, photorealistic, detailed landscape'",
lines=3,
)
text_input = gr.Textbox(
label="QR Code Content",
placeholder="Enter URL or plain text",
value="Enter your URL or text here... For example: https://github.com",
lines=3,
)
# Import Settings section - separate accordion
with gr.Accordion("Import Settings from JSON", open=False):
gr.Markdown(
"Paste a settings JSON string (copied from a previous generation) to load all parameters at once."
)
import_json_input_standard = gr.Textbox(
label="Paste Settings JSON",
placeholder='{"pipeline": "standard", "prompt": "...", "seed": 718313, ...}',
lines=3,
)
import_status_standard = gr.Textbox(
label="Import Status",
interactive=False,
visible=False,
lines=2,
)
with gr.Row():
load_settings_btn_standard = gr.Button(
"Load Settings", variant="primary"
)
clear_json_btn_standard = gr.Button(
"Clear", variant="secondary"
)
# Change Settings Manually - separate accordion
with gr.Accordion("Change Settings Manually", open=False):
# Add image size slider
image_size = gr.Slider(
minimum=512,
maximum=1024,
step=64,
value=512,
label="Image Size",
info="Base size of the generated image. Final output will be 2x this size (e.g., 512 → 1024) due to the two-step enhancement process. Higher values use more VRAM and take longer to process.",
)
# Add border size slider
border_size = gr.Slider(
minimum=0,
maximum=8,
step=1,
value=4,
label="QR Code Border Size",
info="Number of modules (squares) to use as border around the QR code. Higher values add more whitespace.",
)
# Add error correction dropdown
error_correction = gr.Dropdown(
choices=[
"Low (7%)",
"Medium (15%)",
"Quartile (25%)",
"High (30%)",
],
value="Medium (15%)",
label="Error Correction Level",
info="Higher error correction makes the QR code more scannable when damaged or obscured, but increases its size and complexity. Medium (15%) is a good starting point for most uses.",
)
# Add module size slider
module_size = gr.Slider(
minimum=4,
maximum=16,
step=1,
value=12,
label="QR Module Size",
info="Pixel width of the smallest QR code unit. Larger values improve readability but require a larger image size. 12 is a good starting point.",
)
# Add module drawer dropdown with style examples
module_drawer = gr.Dropdown(
choices=[
"Square",
"Gapped Square",
"Circle",
"Rounded",
"Vertical bars",
"Horizontal bars",
],
value="Square",
label="QR Code Style",
info="Select the style of the QR code modules (squares). See examples below. Different styles can give your QR code a unique look while maintaining scannability.",
)
# Add style examples with labels
gr.Markdown("### Style Examples:")
# First row of examples
with gr.Row():
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Square**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/square.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Gapped Square**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/gapped_square.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Circle**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/circle.png",
width=100,
show_label=False,
show_download_button=False,
)
# Second row of examples
with gr.Row():
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Rounded**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/rounded.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Vertical Bars**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/vertical-bars.png",
width=100,
show_label=False,
show_download_button=False,
)
with gr.Column(scale=1, min_width=0):
gr.Markdown("**Horizontal Bars**", show_label=False)
gr.Image(
"custom_nodes/ComfyQR/img/horizontal-bars.png",
width=100,
show_label=False,
show_download_button=False,
)
# Add upscale checkbox
enable_upscale = gr.Checkbox(
label="Enable Upscaling",
value=False,
info="Enable upscaling with RealESRGAN for higher quality output (disabled by default for standard pipeline)",
)
# Add FreeU checkbox
enable_freeu_standard = gr.Checkbox(
label="Enable FreeU",
value=False,
info="Enable FreeU quality enhancement (disabled by default for standard pipeline)",
)
# Add seed controls
use_custom_seed = gr.Checkbox(
label="Use Custom Seed",
value=True,
info="Enable to use a specific seed for reproducible results",
)
seed = gr.Slider(
minimum=0,
maximum=2000000,
step=1,
value=718313,
label="Seed",
visible=True, # Initially visible since use_custom_seed=True
info="Seed value for reproducibility. Same seed with same settings will produce the same result.",
)
# ControlNet Strength Parameters
gr.Markdown(
"### ControlNet Strength (QR Code Preservation)"
)
gr.Markdown(
"**IMPORTANT:** Lower values preserve QR structure better (more scannable). Higher values create more artistic effects but may reduce scannability."
)
controlnet_strength_standard_first = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.45,
label="First Pass Strength (Brightness + Tile)",
info="Controls how much the AI modifies the QR in both ControlNet passes. LOWER = more scannable, HIGHER = more artistic. Try 0.35-0.50 for good balance. Default: 0.45",
)
controlnet_strength_standard_final = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
label="Final Pass Strength (Tile Refinement)",
info="Controls the final tile ControlNet pass strength. Usually kept at 1.0 for clarity. Default: 1.0",
)
# The generate button
generate_btn = gr.Button(
"Generate Standard QR", variant="primary"
)
with gr.Column():
# The output image
output_image = gr.Image(label="Generated Standard QR Code")
error_message = gr.Textbox(
label="Status / Errors",
interactive=False,
lines=3,
)
# Wrap settings output in accordion (initially hidden)
with gr.Accordion(
"Shareable Settings (JSON)", open=True, visible=False
) as settings_accordion_standard:
settings_output_standard = gr.Textbox(
label="Copy this JSON to share your exact settings",
interactive=True,
lines=5,
show_copy_button=True,
)
# When clicking the button, it will trigger the main function
generate_btn.click(
fn=generate_standard_qr,
inputs=[
prompt_input,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
use_custom_seed,
seed,
enable_upscale,
enable_freeu_standard,
controlnet_strength_standard_first,
controlnet_strength_standard_final,
],
outputs=[
output_image,
error_message,
settings_output_standard,
settings_accordion_standard,
],
)
# Load Settings button event handler
load_settings_btn_standard.click(
fn=load_settings_from_json_standard,
inputs=[import_json_input_standard],
outputs=[
prompt_input,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
use_custom_seed,
seed,
enable_upscale,
enable_freeu_standard,
controlnet_strength_standard_first,
controlnet_strength_standard_final,
import_status_standard,
],
)
# Clear button event handler
clear_json_btn_standard.click(
fn=lambda: ("", gr.update(visible=False)),
inputs=[],
outputs=[import_json_input_standard, import_status_standard],
)
# Seed slider visibility toggle
use_custom_seed.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_custom_seed],
outputs=[seed],
)
# Add examples
examples = [
[
"some clothes spread on ropes, realistic, great details, out in the open air sunny day realistic, great details,absence of people, Detailed and Intricate, CGI, Photoshoot,rim light, 8k, 16k, ultra detail",
"https://www.google.com",
"URL",
512,
4,
"Medium (15%)",
12,
"Square",
],
[
"some cards on poker tale, realistic, great details, realistic, great details,absence of people, Detailed and Intricate, CGI, Photoshoot,rim light, 8k, 16k, ultra detail",
"https://store.steampowered.com",
"URL",
512,
4,
"Medium (15%)",
12,
"Square",
],
[
"a beautiful sunset over mountains, photorealistic, detailed landscape, golden hour, dramatic lighting, 8k, ultra detailed",
"https://github.com",
"URL",
512,
4,
"Medium (15%)",
12,
"Square",
],
[
"underwater scene with coral reef and tropical fish, photorealistic, detailed, crystal clear water, sunlight rays, 8k, ultra detailed",
"https://twitter.com",
"URL",
512,
4,
"Medium (15%)",
12,
"Square",
],
[
"futuristic cityscape with flying cars and neon lights, cyberpunk style, detailed architecture, night scene, 8k, ultra detailed",
"https://linkedin.com",
"URL",
512,
4,
"Medium (15%)",
12,
"Square",
],
[
"vintage camera on wooden table, photorealistic, detailed textures, soft lighting, bokeh background, 8k, ultra detailed",
"https://instagram.com",
"URL",
512,
4,
"Medium (15%)",
12,
"Square",
],
[
"business card design, professional, modern, clean layout, corporate style, detailed, 8k, ultra detailed",
"BEGIN:VCARD\nVERSION:3.0\nFN:John Doe\nORG:Acme Corporation\nTITLE:Software Engineer\nTEL:+1-555-123-4567\nEMAIL:[email protected]\nEND:VCARD",
"Plain Text",
832,
4,
"Medium (15%)",
12,
"Square",
],
[
"wifi network symbol, modern tech, digital art, glowing blue, detailed, 8k, ultra detailed",
"WIFI:T:WPA;S:MyNetwork;P:MyPassword123;;",
"Plain Text",
576,
4,
"Medium (15%)",
12,
"Square",
],
[
"calendar appointment reminder, organized planner, professional office, detailed, 8k, ultra detailed",
"BEGIN:VEVENT\nSUMMARY:Team Meeting\nDTSTART:20251115T140000Z\nDTEND:20251115T150000Z\nLOCATION:Conference Room A\nEND:VEVENT",
"Plain Text",
832,
4,
"Medium (15%)",
12,
"Square",
],
[
"location pin on map, travel destination, scenic view, detailed cartography, 8k, ultra detailed",
"geo:37.7749,-122.4194",
"Plain Text",
512,
4,
"Medium (15%)",
12,
"Square",
],
]
gr.Examples(
examples=examples,
inputs=[
prompt_input,
text_input,
input_type,
image_size,
border_size,
error_correction,
module_size,
module_drawer,
],
outputs=[output_image, error_message],
fn=generate_standard_qr,
cache_examples=False,
)
# ARTISTIC QR TAB
app.queue() # Required for gr.Progress() to work!
app.launch(share=False, mcp_server=True)
# Note: Automatic file cleanup via delete_cache not available in Gradio 5.49.1
# Files will be cleaned up when the server is restarted
|