Spaces:
Running
Running
openhands
openhands
commited on
Commit
·
e003f7b
1
Parent(s):
0ee2099
Update data loader to support agent-centric directory structure
Browse files- Add support for new results/YYYYMMDD_model/ directory structure
- Each agent directory contains metadata.json and scores.json
- Maintain backward compatibility with old JSONL format
- Update mock data to use new structure
Co-authored-by: openhands <[email protected]>
- data/extracted/1.0.0-dev1/results/20251124_claude_3_5_sonnet_20241022/metadata.json +9 -0
- data/extracted/1.0.0-dev1/results/20251124_claude_3_5_sonnet_20241022/scores.json +62 -0
- data/extracted/1.0.0-dev1/results/20251124_claude_3_opus_20240229/metadata.json +9 -0
- data/extracted/1.0.0-dev1/results/20251124_claude_3_opus_20240229/scores.json +62 -0
- data/extracted/1.0.0-dev1/results/20251124_gpt_4_turbo_2024_04_09/metadata.json +9 -0
- data/extracted/1.0.0-dev1/results/20251124_gpt_4_turbo_2024_04_09/scores.json +62 -0
- data/extracted/1.0.0-dev1/results/20251124_gpt_4o_2024_11_20/metadata.json +9 -0
- data/extracted/1.0.0-dev1/results/20251124_gpt_4o_2024_11_20/scores.json +62 -0
- data/extracted/1.0.0-dev1/results/20251124_gpt_4o_mini_2024_07_18/metadata.json +9 -0
- data/extracted/1.0.0-dev1/results/20251124_gpt_4o_mini_2024_07_18/scores.json +62 -0
- simple_data_loader.py +80 -18
data/extracted/1.0.0-dev1/results/20251124_claude_3_5_sonnet_20241022/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "OpenHands CodeAct v2.1",
|
| 3 |
+
"agent_version": "OpenHands CodeAct v2.1",
|
| 4 |
+
"model": "claude-3-5-sonnet-20241022",
|
| 5 |
+
"openness": "closed_api_available",
|
| 6 |
+
"tool_usage": "standard",
|
| 7 |
+
"submission_time": "2025-11-24T19:56:00.092865",
|
| 8 |
+
"directory_name": "20251124_claude_3_5_sonnet_20241022"
|
| 9 |
+
}
|
data/extracted/1.0.0-dev1/results/20251124_claude_3_5_sonnet_20241022/scores.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "swe-bench",
|
| 4 |
+
"score": 48.3,
|
| 5 |
+
"metric": "resolve_rate",
|
| 6 |
+
"total_cost": 34.15,
|
| 7 |
+
"total_runtime": 541.5,
|
| 8 |
+
"tags": [
|
| 9 |
+
"swe-bench"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "swe-bench-multimodal",
|
| 14 |
+
"score": 42.1,
|
| 15 |
+
"metric": "resolve_rate",
|
| 16 |
+
"total_cost": 31.05,
|
| 17 |
+
"total_runtime": 510.5,
|
| 18 |
+
"tags": [
|
| 19 |
+
"swe-bench-multimodal"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "commit0",
|
| 24 |
+
"score": 71.2,
|
| 25 |
+
"metric": "test_pass_rate",
|
| 26 |
+
"total_cost": 45.6,
|
| 27 |
+
"total_runtime": 656.0,
|
| 28 |
+
"tags": [
|
| 29 |
+
"commit0"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "multi-swe-bench",
|
| 34 |
+
"score": 35.2,
|
| 35 |
+
"metric": "resolve_rate",
|
| 36 |
+
"total_cost": 27.6,
|
| 37 |
+
"total_runtime": 476.0,
|
| 38 |
+
"tags": [
|
| 39 |
+
"multi-swe-bench"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "swt-bench",
|
| 44 |
+
"score": 65.4,
|
| 45 |
+
"metric": "success_rate",
|
| 46 |
+
"total_cost": 42.7,
|
| 47 |
+
"total_runtime": 627.0,
|
| 48 |
+
"tags": [
|
| 49 |
+
"swt-bench"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"benchmark": "gaia",
|
| 54 |
+
"score": 58.7,
|
| 55 |
+
"metric": "accuracy",
|
| 56 |
+
"total_cost": 39.35,
|
| 57 |
+
"total_runtime": 593.5,
|
| 58 |
+
"tags": [
|
| 59 |
+
"gaia"
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
data/extracted/1.0.0-dev1/results/20251124_claude_3_opus_20240229/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "SWE-Agent",
|
| 3 |
+
"agent_version": "SWE-Agent",
|
| 4 |
+
"model": "claude-3-opus-20240229",
|
| 5 |
+
"openness": "closed_api_available",
|
| 6 |
+
"tool_usage": "custom_interface",
|
| 7 |
+
"submission_time": "2025-11-24T19:56:00.092922",
|
| 8 |
+
"directory_name": "20251124_claude_3_opus_20240229"
|
| 9 |
+
}
|
data/extracted/1.0.0-dev1/results/20251124_claude_3_opus_20240229/scores.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "swe-bench",
|
| 4 |
+
"score": 29.8,
|
| 5 |
+
"metric": "resolve_rate",
|
| 6 |
+
"total_cost": 24.9,
|
| 7 |
+
"total_runtime": 449.0,
|
| 8 |
+
"tags": [
|
| 9 |
+
"swe-bench"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "swe-bench-multimodal",
|
| 14 |
+
"score": 25.7,
|
| 15 |
+
"metric": "resolve_rate",
|
| 16 |
+
"total_cost": 22.85,
|
| 17 |
+
"total_runtime": 428.5,
|
| 18 |
+
"tags": [
|
| 19 |
+
"swe-bench-multimodal"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "commit0",
|
| 24 |
+
"score": 52.1,
|
| 25 |
+
"metric": "test_pass_rate",
|
| 26 |
+
"total_cost": 36.05,
|
| 27 |
+
"total_runtime": 560.5,
|
| 28 |
+
"tags": [
|
| 29 |
+
"commit0"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "multi-swe-bench",
|
| 34 |
+
"score": 21.5,
|
| 35 |
+
"metric": "resolve_rate",
|
| 36 |
+
"total_cost": 20.75,
|
| 37 |
+
"total_runtime": 407.5,
|
| 38 |
+
"tags": [
|
| 39 |
+
"multi-swe-bench"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "swt-bench",
|
| 44 |
+
"score": 44.2,
|
| 45 |
+
"metric": "success_rate",
|
| 46 |
+
"total_cost": 32.1,
|
| 47 |
+
"total_runtime": 521.0,
|
| 48 |
+
"tags": [
|
| 49 |
+
"swt-bench"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"benchmark": "gaia",
|
| 54 |
+
"score": 39.4,
|
| 55 |
+
"metric": "accuracy",
|
| 56 |
+
"total_cost": 29.7,
|
| 57 |
+
"total_runtime": 497.0,
|
| 58 |
+
"tags": [
|
| 59 |
+
"gaia"
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
data/extracted/1.0.0-dev1/results/20251124_gpt_4_turbo_2024_04_09/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "AutoCodeRover",
|
| 3 |
+
"agent_version": "AutoCodeRover",
|
| 4 |
+
"model": "gpt-4-turbo-2024-04-09",
|
| 5 |
+
"openness": "closed_api_available",
|
| 6 |
+
"tool_usage": "standard",
|
| 7 |
+
"submission_time": "2025-11-24T19:56:00.092908",
|
| 8 |
+
"directory_name": "20251124_gpt_4_turbo_2024_04_09"
|
| 9 |
+
}
|
data/extracted/1.0.0-dev1/results/20251124_gpt_4_turbo_2024_04_09/scores.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "swe-bench",
|
| 4 |
+
"score": 38.7,
|
| 5 |
+
"metric": "resolve_rate",
|
| 6 |
+
"total_cost": 29.35,
|
| 7 |
+
"total_runtime": 493.5,
|
| 8 |
+
"tags": [
|
| 9 |
+
"swe-bench"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "swe-bench-multimodal",
|
| 14 |
+
"score": 34.2,
|
| 15 |
+
"metric": "resolve_rate",
|
| 16 |
+
"total_cost": 27.1,
|
| 17 |
+
"total_runtime": 471.0,
|
| 18 |
+
"tags": [
|
| 19 |
+
"swe-bench-multimodal"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "commit0",
|
| 24 |
+
"score": 61.5,
|
| 25 |
+
"metric": "test_pass_rate",
|
| 26 |
+
"total_cost": 40.75,
|
| 27 |
+
"total_runtime": 607.5,
|
| 28 |
+
"tags": [
|
| 29 |
+
"commit0"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "multi-swe-bench",
|
| 34 |
+
"score": 28.4,
|
| 35 |
+
"metric": "resolve_rate",
|
| 36 |
+
"total_cost": 24.2,
|
| 37 |
+
"total_runtime": 442.0,
|
| 38 |
+
"tags": [
|
| 39 |
+
"multi-swe-bench"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "swt-bench",
|
| 44 |
+
"score": 54.1,
|
| 45 |
+
"metric": "success_rate",
|
| 46 |
+
"total_cost": 37.05,
|
| 47 |
+
"total_runtime": 570.5,
|
| 48 |
+
"tags": [
|
| 49 |
+
"swt-bench"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"benchmark": "gaia",
|
| 54 |
+
"score": 48.3,
|
| 55 |
+
"metric": "accuracy",
|
| 56 |
+
"total_cost": 34.15,
|
| 57 |
+
"total_runtime": 541.5,
|
| 58 |
+
"tags": [
|
| 59 |
+
"gaia"
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
data/extracted/1.0.0-dev1/results/20251124_gpt_4o_2024_11_20/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "OpenHands CodeAct v2.0",
|
| 3 |
+
"agent_version": "OpenHands CodeAct v2.0",
|
| 4 |
+
"model": "gpt-4o-2024-11-20",
|
| 5 |
+
"openness": "closed_api_available",
|
| 6 |
+
"tool_usage": "standard",
|
| 7 |
+
"submission_time": "2025-11-24T19:56:00.092895",
|
| 8 |
+
"directory_name": "20251124_gpt_4o_2024_11_20"
|
| 9 |
+
}
|
data/extracted/1.0.0-dev1/results/20251124_gpt_4o_2024_11_20/scores.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "swe-bench",
|
| 4 |
+
"score": 45.1,
|
| 5 |
+
"metric": "resolve_rate",
|
| 6 |
+
"total_cost": 32.55,
|
| 7 |
+
"total_runtime": 525.5,
|
| 8 |
+
"tags": [
|
| 9 |
+
"swe-bench"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "swe-bench-multimodal",
|
| 14 |
+
"score": 39.5,
|
| 15 |
+
"metric": "resolve_rate",
|
| 16 |
+
"total_cost": 29.75,
|
| 17 |
+
"total_runtime": 497.5,
|
| 18 |
+
"tags": [
|
| 19 |
+
"swe-bench-multimodal"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "commit0",
|
| 24 |
+
"score": 68.9,
|
| 25 |
+
"metric": "test_pass_rate",
|
| 26 |
+
"total_cost": 44.45,
|
| 27 |
+
"total_runtime": 644.5,
|
| 28 |
+
"tags": [
|
| 29 |
+
"commit0"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "multi-swe-bench",
|
| 34 |
+
"score": 32.8,
|
| 35 |
+
"metric": "resolve_rate",
|
| 36 |
+
"total_cost": 26.4,
|
| 37 |
+
"total_runtime": 464.0,
|
| 38 |
+
"tags": [
|
| 39 |
+
"multi-swe-bench"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "swt-bench",
|
| 44 |
+
"score": 62.3,
|
| 45 |
+
"metric": "success_rate",
|
| 46 |
+
"total_cost": 41.15,
|
| 47 |
+
"total_runtime": 611.5,
|
| 48 |
+
"tags": [
|
| 49 |
+
"swt-bench"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"benchmark": "gaia",
|
| 54 |
+
"score": 55.2,
|
| 55 |
+
"metric": "accuracy",
|
| 56 |
+
"total_cost": 37.6,
|
| 57 |
+
"total_runtime": 576.0,
|
| 58 |
+
"tags": [
|
| 59 |
+
"gaia"
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
data/extracted/1.0.0-dev1/results/20251124_gpt_4o_mini_2024_07_18/metadata.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"agent_name": "Agentless",
|
| 3 |
+
"agent_version": "Agentless",
|
| 4 |
+
"model": "gpt-4o-mini-2024-07-18",
|
| 5 |
+
"openness": "closed_api_available",
|
| 6 |
+
"tool_usage": "standard",
|
| 7 |
+
"submission_time": "2025-11-24T19:56:00.092916",
|
| 8 |
+
"directory_name": "20251124_gpt_4o_mini_2024_07_18"
|
| 9 |
+
}
|
data/extracted/1.0.0-dev1/results/20251124_gpt_4o_mini_2024_07_18/scores.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"benchmark": "swe-bench",
|
| 4 |
+
"score": 32.5,
|
| 5 |
+
"metric": "resolve_rate",
|
| 6 |
+
"total_cost": 26.25,
|
| 7 |
+
"total_runtime": 462.5,
|
| 8 |
+
"tags": [
|
| 9 |
+
"swe-bench"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"benchmark": "swe-bench-multimodal",
|
| 14 |
+
"score": 28.9,
|
| 15 |
+
"metric": "resolve_rate",
|
| 16 |
+
"total_cost": 24.45,
|
| 17 |
+
"total_runtime": 444.5,
|
| 18 |
+
"tags": [
|
| 19 |
+
"swe-bench-multimodal"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"benchmark": "commit0",
|
| 24 |
+
"score": 55.3,
|
| 25 |
+
"metric": "test_pass_rate",
|
| 26 |
+
"total_cost": 37.65,
|
| 27 |
+
"total_runtime": 576.5,
|
| 28 |
+
"tags": [
|
| 29 |
+
"commit0"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"benchmark": "multi-swe-bench",
|
| 34 |
+
"score": 24.1,
|
| 35 |
+
"metric": "resolve_rate",
|
| 36 |
+
"total_cost": 22.05,
|
| 37 |
+
"total_runtime": 420.5,
|
| 38 |
+
"tags": [
|
| 39 |
+
"multi-swe-bench"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"benchmark": "swt-bench",
|
| 44 |
+
"score": 47.8,
|
| 45 |
+
"metric": "success_rate",
|
| 46 |
+
"total_cost": 33.9,
|
| 47 |
+
"total_runtime": 539.0,
|
| 48 |
+
"tags": [
|
| 49 |
+
"swt-bench"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"benchmark": "gaia",
|
| 54 |
+
"score": 42.1,
|
| 55 |
+
"metric": "accuracy",
|
| 56 |
+
"total_cost": 31.05,
|
| 57 |
+
"total_runtime": 510.5,
|
| 58 |
+
"tags": [
|
| 59 |
+
"gaia"
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
simple_data_loader.py
CHANGED
|
@@ -55,31 +55,93 @@ class SimpleLeaderboardViewer:
|
|
| 55 |
self.tag_map[tag].append(task_name)
|
| 56 |
self.benchmark_to_categories[task_name].append(tag)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def _load(self):
|
| 59 |
"""Load the JSONL file for the split and return DataFrame and tag map."""
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
if not jsonl_file.exists():
|
| 63 |
-
# Return empty dataframe with error message
|
| 64 |
-
return pd.DataFrame({
|
| 65 |
-
"Message": [f"No data found for split '{self.split}'. Expected file: {jsonl_file}"]
|
| 66 |
-
}), {}
|
| 67 |
|
| 68 |
-
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
with open(jsonl_file, 'r') as f:
|
| 72 |
-
for line in f:
|
| 73 |
-
if line.strip():
|
| 74 |
-
records.append(json.loads(line))
|
| 75 |
|
| 76 |
-
if not
|
|
|
|
| 77 |
return pd.DataFrame({
|
| 78 |
-
"Message": [f"No data
|
| 79 |
}), {}
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Transform to expected format for leaderboard
|
| 85 |
# Group by agent to aggregate results across datasets
|
|
|
|
| 55 |
self.tag_map[tag].append(task_name)
|
| 56 |
self.benchmark_to_categories[task_name].append(tag)
|
| 57 |
|
| 58 |
+
def _load_from_agent_dirs(self):
|
| 59 |
+
"""Load data from new agent-centric directory structure (results/YYYYMMDD_model/)."""
|
| 60 |
+
results_dir = self.config_path / "results"
|
| 61 |
+
|
| 62 |
+
if not results_dir.exists():
|
| 63 |
+
return None # Fall back to old format
|
| 64 |
+
|
| 65 |
+
all_records = []
|
| 66 |
+
|
| 67 |
+
# Iterate through each agent directory
|
| 68 |
+
for agent_dir in results_dir.iterdir():
|
| 69 |
+
if not agent_dir.is_dir():
|
| 70 |
+
continue
|
| 71 |
+
|
| 72 |
+
metadata_file = agent_dir / "metadata.json"
|
| 73 |
+
scores_file = agent_dir / "scores.json"
|
| 74 |
+
|
| 75 |
+
if not metadata_file.exists() or not scores_file.exists():
|
| 76 |
+
continue
|
| 77 |
+
|
| 78 |
+
# Load metadata and scores
|
| 79 |
+
with open(metadata_file) as f:
|
| 80 |
+
metadata = json.load(f)
|
| 81 |
+
|
| 82 |
+
with open(scores_file) as f:
|
| 83 |
+
scores = json.load(f)
|
| 84 |
+
|
| 85 |
+
# Create one record per benchmark (mimicking old JSONL format)
|
| 86 |
+
for score_entry in scores:
|
| 87 |
+
record = {
|
| 88 |
+
'agent_name': metadata.get('agent_name', 'Unknown'),
|
| 89 |
+
'llm_base': metadata.get('model', 'unknown'),
|
| 90 |
+
'openness': metadata.get('openness', 'unknown'),
|
| 91 |
+
'tool_usage': metadata.get('tool_usage', 'standard'),
|
| 92 |
+
'submission_time': metadata.get('submission_time', ''),
|
| 93 |
+
'score': score_entry.get('score'),
|
| 94 |
+
'metric': score_entry.get('metric', 'unknown'),
|
| 95 |
+
'total_cost': score_entry.get('total_cost'),
|
| 96 |
+
'total_runtime': score_entry.get('total_runtime'),
|
| 97 |
+
'tags': [score_entry.get('benchmark')],
|
| 98 |
+
}
|
| 99 |
+
all_records.append(record)
|
| 100 |
+
|
| 101 |
+
if not all_records:
|
| 102 |
+
return None # Fall back to old format
|
| 103 |
+
|
| 104 |
+
return pd.DataFrame(all_records)
|
| 105 |
+
|
| 106 |
def _load(self):
|
| 107 |
"""Load the JSONL file for the split and return DataFrame and tag map."""
|
| 108 |
+
# Try new format first (agent-centric directories)
|
| 109 |
+
df = self._load_from_agent_dirs()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
if df is None:
|
| 112 |
+
# Fall back to old format (benchmark-centric JSONL)
|
| 113 |
+
jsonl_file = self.config_path / f"{self.split}.jsonl"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
if not jsonl_file.exists():
|
| 116 |
+
# Return empty dataframe with error message
|
| 117 |
return pd.DataFrame({
|
| 118 |
+
"Message": [f"No data found for split '{self.split}'. Expected file: {jsonl_file}"]
|
| 119 |
}), {}
|
| 120 |
|
| 121 |
+
try:
|
| 122 |
+
# Read JSONL file
|
| 123 |
+
records = []
|
| 124 |
+
with open(jsonl_file, 'r') as f:
|
| 125 |
+
for line in f:
|
| 126 |
+
if line.strip():
|
| 127 |
+
records.append(json.loads(line))
|
| 128 |
+
|
| 129 |
+
if not records:
|
| 130 |
+
return pd.DataFrame({
|
| 131 |
+
"Message": [f"No data in file: {jsonl_file}"]
|
| 132 |
+
}), {}
|
| 133 |
+
|
| 134 |
+
# Convert to DataFrame
|
| 135 |
+
df = pd.DataFrame(records)
|
| 136 |
+
except Exception as e:
|
| 137 |
+
import traceback
|
| 138 |
+
traceback.print_exc()
|
| 139 |
+
return pd.DataFrame({
|
| 140 |
+
"Message": [f"Error loading data: {e}"]
|
| 141 |
+
}), {}
|
| 142 |
+
|
| 143 |
+
# Now process the dataframe (works for both old and new format)
|
| 144 |
+
try:
|
| 145 |
|
| 146 |
# Transform to expected format for leaderboard
|
| 147 |
# Group by agent to aggregate results across datasets
|