Spaces:
Running
Running
File size: 32,925 Bytes
085a012 1027cfb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 376500e 6a0d1cb 085a012 6a0d1cb e734bf6 085a012 6a0d1cb 085a012 376500e 085a012 376500e 085a012 ca754bb 085a012 ca754bb 085a012 ca754bb 085a012 1027cfb 085a012 1027cfb 085a012 64c8899 ae0bf64 085a012 376500e 085a012 376500e 085a012 3781804 085a012 3781804 085a012 376500e 085a012 ca754bb 085a012 376500e 085a012 376500e 085a012 376500e 3781804 085a012 3781804 085a012 3781804 085a012 66fcacd 085a012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import os
import base64
from huggingface_hub import HfApi
import aliases
from simple_data_loader import SimpleLeaderboardViewer
from leaderboard_transformer import (
DataTransformer,
transform_raw_dataframe,
create_pretty_tag_map,
INFORMAL_TO_FORMAL_NAME_MAP,
_plot_scatter_plotly,
format_cost_column,
format_score_column,
get_pareto_df,
clean_llm_base_list,
)
from config import (
CONFIG_NAME,
EXTRACTED_DATA_DIR,
IS_INTERNAL,
RESULTS_DATASET,
)
from content import (
create_gradio_anchor_id,
format_error,
get_benchmark_description,
hf_uri_to_web_url,
hyperlink,
SCATTER_DISCLAIMER,
)
api = HfApi()
os.makedirs(EXTRACTED_DATA_DIR, exist_ok=True)
# Simplified icon map (no tooling distinction, only openness)
# Not actually used since we removed icons from the table, but keeping for potential future use
OPENNESS_ICON_MAP = {
aliases.CANONICAL_OPENNESS_OPEN: "assets/ellipse-pink.svg",
aliases.CANONICAL_OPENNESS_CLOSED: "assets/ellipse-yellow.svg",
}
# Add aliases
for canonical_openness, openness_aliases in aliases.OPENNESS_ALIASES.items():
for openness_alias in openness_aliases:
OPENNESS_ICON_MAP[openness_alias] = OPENNESS_ICON_MAP[canonical_openness]
OPENNESS_SVG_MAP = {
aliases.CANONICAL_OPENNESS_OPEN: {
"path": "assets/ellipse-pink.svg",
"description": "Open source model"
},
aliases.CANONICAL_OPENNESS_CLOSED: {
"path": "assets/ellipse-yellow.svg",
"description": "Closed source model"
},
}
def get_svg_as_data_uri(path: str) -> str:
"""Reads an SVG file and returns it as a base64-encoded data URI."""
try:
with open(path, "rb") as svg_file:
encoded_svg = base64.b64encode(svg_file.read()).decode("utf-8")
return f"data:image/svg+xml;base64,{encoded_svg}"
except FileNotFoundError:
print(f"Warning: SVG file not found at {path}")
return ""
def create_svg_html(value, svg_map):
"""
Generates the absolute simplest HTML for an icon, without any extra text.
This version is compatible with gr.DataFrame.
"""
if pd.isna(value) or value not in svg_map:
return ""
path_info = svg_map[value]
# Handle both old string format and new object format
if isinstance(path_info, dict):
path = path_info["path"]
else:
path = path_info
src = get_svg_as_data_uri(path)
# Generate the HTML for the single icon, with NO text.
if src:
return f'<img src="{src}" style="width: 16px; height: 16px; vertical-align: middle;" alt="{value}" title="{value}">'
return ""
def build_openness_tooltip_content() -> str:
"""
Generates the inner HTML for the Model Openness tooltip card.
"""
html_items = []
for name, info in OPENNESS_SVG_MAP.items():
uri = get_svg_as_data_uri(info["path"])
desc = info["description"]
html_items.append(f"""
<div class="tooltip-legend-item">
<img src="{uri}" alt="{name}">
<div>
<strong>{name}</strong>
<span>{desc}</span>
</div>
</div>
""")
joined_items = "".join(html_items)
return f"""<span class="tooltip-icon-legend">
β
<span class="tooltip-card">
<h3>Model Openness</h3>
<p class="tooltip-description">Indicates whether the language model is open source or closed source.</p>
<div class="tooltip-items-container">{joined_items}</div>
</span>
</span>"""
def build_pareto_tooltip_content() -> str:
"""Generates the inner HTML for the Pareto tooltip card with final copy."""
trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
trophy_icon_html = f'<img src="{trophy_uri}" style="width: 25px; height: 25px; vertical-align: middle;">'
return f"""
<h3>On Pareto Frontier</h3>
<p class="tooltip-description">The Pareto frontier represents the best balance between score and cost.</p>
<p class="tooltip-description">Agents on the frontier either:</p>
<ul class="tooltip-sub-list">
<li>Offer the lowest cost for a given performance, or</li>
<li>Deliver the best performance at a given cost.</li>
</ul>
<div class="tooltip-description" style="margin-top: 12px; display: flex; align-items: center;">
<span>These agents are marked with this icon:</span>
<span>{trophy_icon_html}</span>
</div>
"""
def build_descriptions_tooltip_content(table) -> str:
"""Generates the inner HTML for the Column Descriptions tooltip card depending on which kind of table."""
if table == "Overall":
return """
<div class="tooltip-description-item"><b>OpenHands Version:</b> Version of the OpenHands agent evaluated.</div>
<div class="tooltip-description-item"><b>Language Model:</b> Language model(s) used by the agent. Hover over β to view all.</div>
<div class="tooltip-description-item"><b>Overall Score:</b> Macro-average of the five category-level average scores. Each category contributes equally.</div>
<div class="tooltip-description-item"><b>Overall Cost:</b> Macro-average cost per problem across all categories, in USD. Each category contributes equally.</div>
<div class="tooltip-description-item"><b>Bug Fixing Score:</b> Macro-average score across Bug Fixing benchmarks.</div>
<div class="tooltip-description-item"><b>Bug Fixing Cost:</b> Macro-average cost per problem (USD) across Bug Fixing benchmarks.</div>
<div class="tooltip-description-item"><b>Frontend Development Score:</b> Macro-average score across Frontend Development benchmarks.</div>
<div class="tooltip-description-item"><b>Frontend Development Cost:</b> Macro-average cost per problem (USD) across Frontend Development benchmarks.</div>
<div class="tooltip-description-item"><b>App Creation Score:</b> Macro-average score across App Creation benchmarks.</div>
<div class="tooltip-description-item"><b>App Creation Cost:</b> Macro-average cost per problem (USD) across App Creation benchmarks.</div>
<div class="tooltip-description-item"><b>Test Generation Score:</b> Macro-average score across Test Generation benchmarks.</div>
<div class="tooltip-description-item"><b>Test Generation Cost:</b> Macro-average cost per problem (USD) across Test Generation benchmarks.</div>
<div class="tooltip-description-item"><b>Information Gathering Score:</b> Macro-average score across Information Gathering benchmarks.</div>
<div class="tooltip-description-item"><b>Information Gathering Cost:</b> Macro-average cost per problem (USD) across Information Gathering benchmarks.</div>
<div class="tooltip-description-item"><b>Categories Attempted:</b> Number of core categories with at least one benchmark attempted (out of 5).</div>
<div class="tooltip-description-item"><b>Logs:</b> View evaluation run logs (e.g., outputs, traces).</div>
"""
elif table in ["Bug Fixing", "Frontend Development", "App Creation", "Test Generation", "Information Gathering"]:
return f"""
<div class="tooltip-description-item"><b>OpenHands Version:</b> Version of the OpenHands agent evaluated.</div>
<div class="tooltip-description-item"><b>Language Model:</b> Language model(s) used by the agent. Hover over β to view all.</div>
<div class="tooltip-description-item"><b>{table} Score:</b> Macro-average score across {table} benchmarks.</div>
<div class="tooltip-description-item"><b>{table} Cost:</b> Macro-average cost per problem (USD) across {table} benchmarks.</div>
<div class="tooltip-description-item"><b>Benchmark Score:</b> Average (mean) score on the benchmark.</div>
<div class="tooltip-description-item"><b>Benchmark Cost:</b> Average (mean) cost per problem (USD) on the benchmark.</div>
<div class="tooltip-description-item"><b>Benchmarks Attempted:</b> Number of benchmarks attempted in this category (e.g., 3/5).</div>
<div class="tooltip-description-item"><b>Logs:</b> View evaluation run logs (e.g., outputs, traces).</div>
"""
else:
# Fallback for any other table type, e.g., individual benchmarks
return f"""
<div class="tooltip-description-item"><b>OpenHands Version:</b> Version of the OpenHands agent evaluated.</div>
<div class="tooltip-description-item"><b>Language Model:</b> Language model(s) used by the agent. Hover over β to view all.</div>
<div class="tooltip-description-item"><b>Benchmark Attempted:</b> Indicates whether the agent attempted this benchmark.</div>
<div class="tooltip-description-item"><b>{table} Score:</b> Score achieved by the agent on this benchmark.</div>
<div class="tooltip-description-item"><b>{table} Cost:</b> Cost incurred by the agent to solve this benchmark (in USD).</div>
<div class="tooltip-description-item"><b>Logs:</b> View evaluation run logs (e.g., outputs, traces).</div>
"""
# Create HTML for the "Openness" legend items for table
openness_html_items = []
for name, info in OPENNESS_SVG_MAP.items():
uri = get_svg_as_data_uri(info["path"])
# Each item is now its own flexbox container to guarantee alignment
openness_html_items.append(
f'<div style="display: flex; align-items: center; white-space: nowrap;">'
f'<img src="{uri}" alt="{name}" title="{name}" style="width:16px; height:16px; margin-right: 4px; flex-shrink: 0;">'
f'<span>{name}</span>'
f'</div>'
)
openness_html = " ".join(openness_html_items)
pareto_tooltip_content = build_pareto_tooltip_content()
openness_tooltip_content = build_openness_tooltip_content()
def create_legend_markdown(which_table: str) -> str:
"""
Generates the complete HTML for the legend section, including tooltips.
This is used in the main leaderboard display.
"""
descriptions_tooltip_content = build_descriptions_tooltip_content(which_table)
trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
legend_markdown = f"""
<div style="display: flex; flex-wrap: wrap; align-items: flex-start; gap: 20px; font-size: 14px; padding-bottom: 8px;">
<div> <!-- Container for the Pareto section -->
<b>Pareto</b>
<span class="tooltip-icon-legend">
β
<span class="tooltip-card">{pareto_tooltip_content}</span>
</span>
<div class="table-legend-item">
<img src="{trophy_uri}" alt="On Frontier" style="width:20px; height:20px; margin-right: 4px; flex-shrink: 0;">
<span>On frontier</span>
</div>
</div>
<div> <!-- Container for the Openness section -->
<b>Model Openness</b>
{openness_tooltip_content}
<div class="table-legend-item">{openness_html}</div>
</div>
<div><!-- Container for the Column Descriptions section -->
<b>Column Descriptions</b>
<span class="tooltip-icon-legend">
β
<span class="tooltip-card">
<h3>Column Descriptions</h3>
<div class="tooltip-items-container">{descriptions_tooltip_content}</div>
</span>
</span>
</div>
</div>
"""
return legend_markdown
# Create HTML for plot legend with SVG icons and keys
openness_legend_items = []
for name, info in OPENNESS_SVG_MAP.items():
uri = get_svg_as_data_uri(info["path"])
if uri:
openness_legend_items.append(
f'<div class="plot-legend-item">'
f'<img class="plot-legend-item-svg" src="{uri}" alt="{name}" title="{name}">'
f'<div class="plot-legend-item-text">'
f'<div>'
f'<span>{name}</span>'
f'</div>'
f'<span class="description">{info["description"]}</span>'
f'</div>'
f'</div>'
)
plot_legend_html = f"""
<div class="plot-legend-container">
<div id="plot-legend-logo">
<img src="{get_svg_as_data_uri("assets/logo.svg")}">
</div>
<div style="margin-bottom: 16px;">
<span class="plot-legend-category-heading">Pareto</span>
<div style="margin-top: 8px;">
<div class="plot-legend-item">
<img id="plot-legend-item-pareto-svg" class="plot-legend-item-svg" src="{get_svg_as_data_uri("assets/pareto.svg")}">
<span>On frontier</span>
</div>
</div>
</div>
<div>
<span class="plot-legend-category-heading">Model Openness</span>
<div style="margin-top: 8px;">
{''.join(openness_legend_items)}
</div>
</div>
</div>
""";
# --- Global State for Viewers (simple caching) ---
CACHED_VIEWERS = {}
CACHED_TAG_MAPS = {}
class DummyViewer:
"""A mock viewer to be cached on error. It has a ._load() method
to ensure it behaves like the real LeaderboardViewer."""
def __init__(self, error_df):
self._error_df = error_df
def _load(self):
# The _load method returns the error DataFrame and an empty tag map
return self._error_df, {}
def get_leaderboard_viewer_instance(split: str):
"""
Fetches the LeaderboardViewer for a split, using a cache to avoid
re-downloading data. On error, returns a stable DummyViewer object.
"""
global CACHED_VIEWERS, CACHED_TAG_MAPS
if split in CACHED_VIEWERS:
# Cache hit: return the cached viewer and tag map
return CACHED_VIEWERS[split], CACHED_TAG_MAPS.get(split, {"Overall": []})
# --- Cache miss: try to load data from the source ---
try:
# First try to load from extracted data directory (local mock data)
data_dir = EXTRACTED_DATA_DIR if os.path.exists(EXTRACTED_DATA_DIR) else "mock_results"
print(f"Loading data for split '{split}' from: {data_dir}/{CONFIG_NAME}")
viewer = SimpleLeaderboardViewer(
data_dir=data_dir,
config=CONFIG_NAME,
split=split
)
# Simplify tag map creation
pretty_tag_map = create_pretty_tag_map(viewer.tag_map, INFORMAL_TO_FORMAL_NAME_MAP)
# Cache the results for next time
CACHED_VIEWERS[split] = viewer
CACHED_TAG_MAPS[split] = pretty_tag_map # Cache the pretty map directly
return viewer, pretty_tag_map
except Exception as e:
# On ANY error, create a consistent error message and cache a DummyViewer
error_message = f"Error loading data for split '{split}': {e}"
print(format_error(error_message))
dummy_df = pd.DataFrame({"Message": [error_message]})
dummy_viewer = DummyViewer(dummy_df)
dummy_tag_map = {"Overall": []}
# Cache the dummy objects so we don't try to fetch again on this run
CACHED_VIEWERS[split] = dummy_viewer
CACHED_TAG_MAPS[split] = dummy_tag_map
return dummy_viewer, dummy_tag_map
def create_leaderboard_display(
full_df: pd.DataFrame,
tag_map: dict,
category_name: str,
split_name: str
):
"""
This UI factory takes pre-loaded data and renders the main DataFrame and Plot
for a given category (e.g., "Overall" or "Literature Understanding").
"""
# 1. Instantiate the transformer and get the specific view for this category.
# The function no longer loads data itself; it filters the data it receives.
transformer = DataTransformer(full_df, tag_map)
df_view, plots_dict = transformer.view(tag=category_name, use_plotly=True)
pareto_df = get_pareto_df(df_view)
# Get the list of agents on the frontier. We'll use this list later.
trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
trophy_icon_html = f'<img src="{trophy_uri}" alt="On Pareto Frontier" title="On Pareto Frontier" style="width:25px; height:25px;">'
if not pareto_df.empty and 'id' in pareto_df.columns:
pareto_agent_names = pareto_df['id'].tolist()
else:
pareto_agent_names = []
df_view['Pareto'] = df_view.apply(
lambda row: trophy_icon_html if row['id'] in pareto_agent_names else '',
axis=1
)
# Generate openness icons for each row
def get_openness_icon_html(row):
openness_val = row.get('Openness', '')
uri = get_svg_as_data_uri(OPENNESS_ICON_MAP.get(openness_val, "assets/ellipse-pink.svg"))
return f'<img src="{uri}" alt="{openness_val}" title="{openness_val}" style="width:24px; height:24px;">'
df_view['Icon'] = df_view.apply(get_openness_icon_html, axis=1)
# Format cost columns
for col in df_view.columns:
if "Cost" in col:
df_view = format_cost_column(df_view, col)
# Fill NaN scores with 0
for col in df_view.columns:
if "Score" in col:
df_view = format_score_column(df_view, col)
scatter_plot = plots_dict.get('scatter_plot', go.Figure())
#Make pretty and format the Language Model column
df_view['Language Model'] = df_view['Language Model'].apply(clean_llm_base_list)
df_view['Language Model'] = df_view['Language Model'].apply(format_llm_base_with_html)
# append the repro url to the end of the OpenHands Version
if 'Source' in df_view.columns:
df_view['OpenHands Version'] = df_view.apply(
lambda row: f"{row['OpenHands Version']} {row['Source']}" if pd.notna(row['Source']) and row['Source'] else row['OpenHands Version'],
axis=1
)
all_cols = df_view.columns.tolist()
# Remove pareto and Icon columns and insert it at the beginning
all_cols.insert(0, all_cols.pop(all_cols.index('Icon')))
all_cols.insert(0, all_cols.pop(all_cols.index('Pareto')))
df_view = df_view[all_cols]
# Drop internally used columns that are not needed in the display
columns_to_drop = ['id', 'Openness', 'Agent Tooling', 'Source']
df_view = df_view.drop(columns=columns_to_drop, errors='ignore')
header_rename_map = {
"Pareto": "",
"Icon": "",
}
# Rename columns first before getting headers
df_view = df_view.rename(columns=header_rename_map)
# Now get headers from the renamed dataframe
df_headers = df_view.columns.tolist()
df_datatypes = []
for col in df_headers:
if col == "Logs" or "Cost" in col or "Score" in col:
df_datatypes.append("markdown")
elif col in ["OpenHands Version","Language Model", ""]: # "" for renamed Pareto/Icon columns
df_datatypes.append("html")
else:
df_datatypes.append("str")
# Dynamically set widths for the DataFrame columns
fixed_start_widths = [40, 40, 200, 100, 200]
num_score_cost_cols = 0
remaining_headers = df_headers[len(fixed_start_widths):]
for col in remaining_headers:
if "Score" in col or "Cost" in col:
num_score_cost_cols += 1
dynamic_widths = [90] * num_score_cost_cols
fixed_end_widths = [90, 100, 50]
# 5. Combine all the lists to create the final, fully dynamic list.
final_column_widths = fixed_start_widths + dynamic_widths + fixed_end_widths
with gr.Row():
with gr.Column(scale=3):
plot_component = gr.Plot(
value=scatter_plot,
show_label=False,
)
gr.Markdown(value=SCATTER_DISCLAIMER, elem_id="scatter-disclaimer")
with gr.Column(scale=1):
gr.HTML(value=plot_legend_html)
# Put table and key into an accordion
with gr.Accordion("Show / Hide Table View", open=True, elem_id="leaderboard-accordion"):
dataframe_component = gr.DataFrame(
headers=df_headers,
value=df_view,
datatype=df_datatypes,
interactive=False,
wrap=True,
column_widths=final_column_widths,
elem_classes=["wrap-header-df"],
show_search="search",
elem_id="main-leaderboard"
)
legend_markdown = create_legend_markdown(category_name)
gr.HTML(value=legend_markdown, elem_id="legend-markdown")
# Return the components so they can be referenced elsewhere.
return plot_component, dataframe_component
# # --- Detailed Benchmark Display ---
def create_benchmark_details_display(
full_df: pd.DataFrame,
tag_map: dict,
category_name: str,
validation: bool = False,
):
"""
Generates a detailed breakdown for each benchmark within a given category.
For each benchmark, it creates a title, a filtered table, and a scatter plot.
Args:
full_df (pd.DataFrame): The complete, "pretty" dataframe for the entire split.
tag_map (dict): The "pretty" tag map to find the list of benchmarks.
category_name (str): The main category to display details for (e.g., "Literature Understanding").
"""
# 1. Get the list of benchmarks for the selected category
benchmark_names = tag_map.get(category_name, [])
if not benchmark_names:
gr.Markdown(f"No detailed benchmarks found for the category: {category_name}")
return
gr.HTML(f'<h2 class="benchmark-main-subtitle">{category_name} Detailed Benchmark Results</h2>')
gr.Markdown("---")
# 2. Loop through each benchmark and create its UI components
for benchmark_name in benchmark_names:
anchor_id = create_gradio_anchor_id(benchmark_name, validation)
gr.HTML(
f"""
<h3 class="benchmark-title" id="{anchor_id}">{benchmark_name} Leaderboard <a href="#{anchor_id}" class="header-link-icon">π</a></h3>
<div class="benchmark-description">{get_benchmark_description(benchmark_name, validation)}</div>
<button onclick="scroll_to_element('page-content-wrapper')" class="primary-link-button">Return to the aggregate {category_name} leaderboard</button>
"""
)
# 3. Prepare the data for this specific benchmark's table and plot
benchmark_score_col = f"{benchmark_name} Score"
benchmark_cost_col = f"{benchmark_name} Cost"
# Define the columns needed for the detailed table
table_cols = ['OpenHands Version','Source','Openness', 'Date', benchmark_score_col, benchmark_cost_col,'Logs','id', 'Language Model']
# Filter to only columns that actually exist in the full dataframe
existing_table_cols = [col for col in table_cols if col in full_df.columns]
if benchmark_score_col not in existing_table_cols:
gr.Markdown(f"Score data for {benchmark_name} not available.")
continue # Skip to the next benchmark if score is missing
# Create a specific DataFrame for the table view
benchmark_table_df = full_df[existing_table_cols].copy()
pareto_df = get_pareto_df(benchmark_table_df)
# Get the list of agents on the frontier. We'll use this list later.
trophy_uri = get_svg_as_data_uri("assets/trophy.svg")
trophy_icon_html = f'<img src="{trophy_uri}" alt="On Pareto Frontier" title="On Pareto Frontier" style="width:25px; height:25px;">'
if not pareto_df.empty and 'id' in pareto_df.columns:
pareto_agent_names = pareto_df['id'].tolist()
else:
pareto_agent_names = []
benchmark_table_df['Pareto'] = benchmark_table_df.apply(
lambda row: trophy_icon_html if row['id'] in pareto_agent_names else '',
axis=1
)
# Create simple openness icons
def get_openness_icon_html(row):
openness_val = row.get('Openness', '')
uri = get_svg_as_data_uri(OPENNESS_ICON_MAP.get(openness_val, "assets/ellipse-pink.svg"))
return f'<img src="{uri}" alt="{openness_val}" title="{openness_val}" style="width:24px; height:24px;">'
benchmark_table_df['Icon'] = benchmark_table_df.apply(get_openness_icon_html, axis=1)
#Make pretty and format the Language Model column
benchmark_table_df['Language Model'] = benchmark_table_df['Language Model'].apply(clean_llm_base_list)
benchmark_table_df['Language Model'] = benchmark_table_df['Language Model'].apply(format_llm_base_with_html)
# append the repro url to the end of the OpenHands Version
if 'Source' in benchmark_table_df.columns:
benchmark_table_df['OpenHands Version'] = benchmark_table_df.apply(
lambda row: f"{row['OpenHands Version']} {row['Source']}" if row['Source'] else row['OpenHands Version'],
axis=1
)
# Calculated and add "Benchmark Attempted" column
def check_benchmark_status(row):
has_score = pd.notna(row.get(benchmark_score_col))
has_cost = pd.notna(row.get(benchmark_cost_col))
if has_score and has_cost:
return "β
"
if has_score or has_cost:
return "β οΈ"
return "π« "
# Apply the function to create the new column
benchmark_table_df['Attempted Benchmark'] = benchmark_table_df.apply(check_benchmark_status, axis=1)
# Sort the DataFrame
if benchmark_score_col in benchmark_table_df.columns:
benchmark_table_df = benchmark_table_df.sort_values(
by=benchmark_score_col, ascending=False, na_position='last'
)
# 1. Format the cost and score columns
benchmark_table_df = format_cost_column(benchmark_table_df, benchmark_cost_col)
benchmark_table_df = format_score_column(benchmark_table_df, benchmark_score_col)
desired_cols_in_order = [
'Pareto',
'Icon',
'Language Model',
'OpenHands Version',
'Attempted Benchmark',
benchmark_score_col,
benchmark_cost_col,
'Date',
'Logs'
]
for col in desired_cols_in_order:
if col not in benchmark_table_df.columns:
benchmark_table_df[col] = pd.NA # Add as an empty column
benchmark_table_df = benchmark_table_df[desired_cols_in_order]
# Rename columns for a cleaner table display, as requested
benchmark_table_df.rename({
benchmark_score_col: 'Score',
benchmark_cost_col: 'Cost',
}, inplace=True)
# Remove Pareto and Icon column headers (rename to empty string)
header_rename_map = {
"Pareto": "",
"Icon": "",
}
benchmark_table_df = benchmark_table_df.rename(columns=header_rename_map)
# Now get headers from the renamed dataframe
df_headers = benchmark_table_df.columns.tolist()
df_datatypes = []
for col in df_headers:
if "Logs" in col or "Cost" in col or "Score" in col:
df_datatypes.append("markdown")
elif col in ["OpenHands Version", "Language Model", ""]: # "" for renamed Pareto/Icon columns
df_datatypes.append("html")
else:
df_datatypes.append("str")
benchmark_plot = _plot_scatter_plotly(
data=full_df,
x=benchmark_cost_col,
y=benchmark_score_col,
agent_col="Agent",
name=benchmark_name
)
with gr.Row():
with gr.Column(scale=3):
gr.Plot(value=benchmark_plot, show_label=False)
gr.Markdown(value=SCATTER_DISCLAIMER, elem_id="scatter-disclaimer")
with gr.Column(scale=1):
gr.HTML(value=plot_legend_html)
# Put table and key into an accordion
with gr.Accordion("Show / Hide Table View", open=True, elem_id="leaderboard-accordion"):
gr.DataFrame(
headers=df_headers,
value=benchmark_table_df,
datatype=df_datatypes,
interactive=False,
wrap=True,
column_widths=[40, 40, 200, 150, 175, 85, 100, 100, 80, 40],
show_search="search",
elem_classes=["wrap-header-df"]
)
legend_markdown = create_legend_markdown(benchmark_name)
gr.HTML(value=legend_markdown, elem_id="legend-markdown")
def get_full_leaderboard_data(split: str) -> tuple[pd.DataFrame, dict]:
"""
Loads and transforms the complete dataset for a given split.
This function handles caching and returns the final "pretty" DataFrame and tag map.
"""
viewer_or_data, raw_tag_map = get_leaderboard_viewer_instance(split)
if isinstance(viewer_or_data, (SimpleLeaderboardViewer, DummyViewer)):
raw_df, _ = viewer_or_data._load()
if raw_df.empty:
return pd.DataFrame(), {}
pretty_df = transform_raw_dataframe(raw_df)
pretty_tag_map = create_pretty_tag_map(raw_tag_map, INFORMAL_TO_FORMAL_NAME_MAP)
if "Logs" in pretty_df.columns:
def format_log_entry_to_html(raw_uri):
if pd.isna(raw_uri) or raw_uri == "": return ""
web_url = hf_uri_to_web_url(str(raw_uri))
return hyperlink(web_url, "π") if web_url else ""
# Apply the function to the "Logs" column
pretty_df["Logs"] = pretty_df["Logs"].apply(format_log_entry_to_html)
if "Source" in pretty_df.columns:
def format_source_url_to_html(raw_url):
# Handle empty or NaN values, returning a blank string.
if pd.isna(raw_url) or raw_url == "": return ""
# Assume 'source_url' is already a valid web URL and doesn't need conversion.
return hyperlink(str(raw_url), "π")
# Apply the function to the "source_url" column.
pretty_df["Source"] = pretty_df["Source"].apply(format_source_url_to_html)
return pretty_df, pretty_tag_map
# Fallback for unexpected types
return pd.DataFrame(), {}
def create_sub_navigation_bar(tag_map: dict, category_name: str, validation: bool = False) -> gr.HTML:
"""
Builds the entire sub-navigation bar as a single, self-contained HTML component.
This bypasses Gradio's layout components, giving us full control.
"""
benchmark_names = tag_map.get(category_name, [])
if not benchmark_names:
# Return an empty HTML component to prevent errors
return gr.HTML()
# Start building the list of HTML button elements as strings
html_buttons = []
for name in benchmark_names:
target_id = create_gradio_anchor_id(name, validation)
# Create a standard HTML button.
# The onclick attribute calls our global JS function directly.
# Note the mix of double and single quotes.
button_str = f"""
<button
class="primary-link-button"
onclick="scroll_to_element('{target_id}')"
>
{name}
</button>
"""
html_buttons.append(button_str)
# Join the button strings and wrap them in a single div container
# This container will be our flexbox row.
full_html = f"""
<div class="sub-nav-bar-container">
<span class="sub-nav-label">Benchmarks in this category:</span>
{' | '.join(html_buttons)}
</div>
"""
# Return the entire navigation bar as one single Gradio HTML component
return gr.HTML(full_html)
def format_llm_base_with_html(value):
"""
Formats the 'Models Used' cell value.
If the value is a list with more than 1 element, it returns an
HTML <span> with the full list in a hover-over tooltip.
If it's a single-element list, it returns just that element.
Otherwise, it returns the original value.
"""
if isinstance(value, list):
if len(value) > 1:
# Join the list items with a newline character for a clean tooltip
tooltip_text = "\n".join(map(str, value))
# Return an HTML span with the title attribute for the tooltip
return f'<span class="tooltip-icon cell-tooltip-icon" style="cursor: help;" data-tooltip="{tooltip_text}">{value[0]} (+ {len(value) - 1}) β</span>'
if len(value) == 1:
# If only one item, just return that item
return value[0]
# Return the value as-is if it's not a list or is an empty list
return value
|