Upload 2 files
Browse files- app.py +105 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from pymongo import MongoClient
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import base64
|
| 5 |
+
import os
|
| 6 |
+
import io
|
| 7 |
+
import boto3
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
bedrock_runtime = boto3.client('bedrock-runtime',
|
| 11 |
+
aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'),
|
| 12 |
+
aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'),
|
| 13 |
+
region_name="us-east-1"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def construct_bedrock_body(base64_string, text):
|
| 17 |
+
if text:
|
| 18 |
+
return json.dumps(
|
| 19 |
+
{
|
| 20 |
+
"inputImage": base64_string,
|
| 21 |
+
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
| 22 |
+
"inputText": text
|
| 23 |
+
}
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
return json.dumps(
|
| 27 |
+
{
|
| 28 |
+
"inputImage": base64_string,
|
| 29 |
+
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
| 30 |
+
}
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_embedding_from_titan_multimodal(body):
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
response = bedrock_runtime.invoke_model(
|
| 38 |
+
body=body,
|
| 39 |
+
modelId="amazon.titan-embed-image-v1",
|
| 40 |
+
accept="application/json",
|
| 41 |
+
contentType="application/json",
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
response_body = json.loads(response.get("body").read())
|
| 45 |
+
return response_body["embedding"]
|
| 46 |
+
|
| 47 |
+
uri = os.environ.get('MONGODB_ATLAS_URI')
|
| 48 |
+
client = MongoClient(uri)
|
| 49 |
+
db_name = 'celebrity_1000_embeddings'
|
| 50 |
+
collection_name = 'celeb_images'
|
| 51 |
+
|
| 52 |
+
celeb_images = client[db_name][collection_name]
|
| 53 |
+
|
| 54 |
+
def start_image_search(image, text):
|
| 55 |
+
if not image:
|
| 56 |
+
## Alert the user to upload an image
|
| 57 |
+
raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
|
| 58 |
+
buffered = io.BytesIO()
|
| 59 |
+
image.save(buffered, format="JPEG")
|
| 60 |
+
img_byte = buffered.getvalue()
|
| 61 |
+
# Encode this byte array to Base64
|
| 62 |
+
img_base64 = base64.b64encode(img_byte)
|
| 63 |
+
|
| 64 |
+
# Convert Base64 bytes to string for JSON serialization
|
| 65 |
+
img_base64_str = img_base64.decode('utf-8')
|
| 66 |
+
body = construct_bedrock_body(img_base64_str, text)
|
| 67 |
+
embedding = get_embedding_from_titan_multimodal(body)
|
| 68 |
+
|
| 69 |
+
doc = list(celeb_images.aggregate([{
|
| 70 |
+
"$vectorSearch": {
|
| 71 |
+
"index": "vector_index",
|
| 72 |
+
"path" : "embeddings",
|
| 73 |
+
"queryVector": embedding,
|
| 74 |
+
"numCandidates" : 15,
|
| 75 |
+
"limit" : 3
|
| 76 |
+
}}, {"$project": {"image":1}}]))
|
| 77 |
+
|
| 78 |
+
images = []
|
| 79 |
+
for image in doc:
|
| 80 |
+
images.append(Image.open(io.BytesIO(base64.b64decode(image['image']))))
|
| 81 |
+
|
| 82 |
+
return images
|
| 83 |
+
|
| 84 |
+
with gr.Blocks() as demo:
|
| 85 |
+
gr.Markdown(
|
| 86 |
+
"""
|
| 87 |
+
# MongoDB's Vector Celeb Image matcher
|
| 88 |
+
|
| 89 |
+
Upload an image and find the most similar celeb image from the database.
|
| 90 |
+
|
| 91 |
+
💪 Make a great pose to impact the search! 🤯
|
| 92 |
+
|
| 93 |
+
""")
|
| 94 |
+
|
| 95 |
+
### Image gradio input
|
| 96 |
+
gr.Interface(
|
| 97 |
+
fn=start_image_search,
|
| 98 |
+
inputs=[gr.Image(type="pil", label="Upload an image"),gr.Textbox(label="Enter an adjusment to the image")],
|
| 99 |
+
## outputs=gr.Image(type="pil")
|
| 100 |
+
outputs=gr.Gallery(
|
| 101 |
+
label="Generated images", show_label=True, elem_id="gallery"
|
| 102 |
+
, columns=[3], rows=[1], object_fit="contain", height="auto")
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pymongo
|
| 2 |
+
boto3
|
| 3 |
+
gradio
|