Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import glob | |
| import torch | |
| from opencd.apis import OpenCDInferencer | |
| device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
| config_file = 'configs/TTP/ttp_sam_large_levircd_infer.py' | |
| checkpoint_file = 'ckpt/epoch_260.pth' | |
| # build the model from a config file and a checkpoint file | |
| mmcd_inferencer = OpenCDInferencer( | |
| model=config_file, | |
| weights=checkpoint_file, | |
| classes=['unchanged', 'changed'], | |
| palette=[[0, 0, 0], [255, 255, 255]], | |
| device=device | |
| ) | |
| def infer(img1, img2): | |
| # test a single image | |
| result = mmcd_inferencer([[img1, img2]], show=False, return_vis=True) | |
| visualization = result['visualization'] | |
| return visualization | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # [Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection](https://arxiv.org/abs/2312.16202) | |
| """) | |
| # a empty row | |
| gr.Row() | |
| with gr.Row(): | |
| input_0 = gr.Image(label='Input Image1') | |
| input_1 = gr.Image(label='Input Image2') | |
| with gr.Row(): | |
| output_gt = gr.Image(label='Predicted Mask') | |
| btn = gr.Button("Detect") | |
| btn.click(infer, inputs=[input_0, input_1], outputs=[output_gt]) | |
| img1_files = glob.glob('samples/A/*.png') | |
| img2_files = [f.replace('A', 'B') for f in img1_files] | |
| input_files = [[x, y] for x, y in zip(img1_files, img2_files)] | |
| gr.Examples(input_files, fn=infer, inputs=[input_0, input_1], outputs=[output_gt], cache_examples=True) | |
| gr.Markdown( | |
| """ | |
| This is the demo of ["Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection"](https://arxiv.org/abs/2312.16202). Seeing [Github](https://github.com/KyanChen/TTP) for more information! | |
| """) | |
| # a empty row | |
| gr.Row() | |
| if __name__ == "__main__": | |
| demo.launch() |