Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Dockerfile +19 -0
- app.py +223 -0
- fastmcp.json +10 -0
- requirements.txt +5 -0
Dockerfile
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
# Set the working directory in the container
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
COPY requirements.txt .
|
| 7 |
+
|
| 8 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 9 |
+
|
| 10 |
+
COPY . .
|
| 11 |
+
|
| 12 |
+
# Create directory for battle replays with proper permissions
|
| 13 |
+
RUN mkdir -p battle_replays && chmod 755 battle_replays
|
| 14 |
+
|
| 15 |
+
EXPOSE 7860
|
| 16 |
+
|
| 17 |
+
ENV PORT=7860
|
| 18 |
+
|
| 19 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from typing import List, Optional, Literal
|
| 5 |
+
|
| 6 |
+
import httpx
|
| 7 |
+
import feedparser
|
| 8 |
+
from pydantic import BaseModel, Field, HttpUrl
|
| 9 |
+
|
| 10 |
+
from fastmcp import FastMCP
|
| 11 |
+
from mistralai import Mistral
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
mcp = FastMCP(
|
| 15 |
+
name="reddit-painpoints",
|
| 16 |
+
description="Monitor r/MistralAI and extract community pain points (with links)",
|
| 17 |
+
host="0.0.0.0",
|
| 18 |
+
port=7860,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
MISTRAL_MODEL = "mistral-medium-2508"
|
| 22 |
+
|
| 23 |
+
class PainPoint(BaseModel):
|
| 24 |
+
"""Structured representation of a user pain point extracted from a Reddit post."""
|
| 25 |
+
|
| 26 |
+
title: str = Field(..., description="Short title of the pain point")
|
| 27 |
+
summary: str = Field(..., description="One-sentence summary of the problem")
|
| 28 |
+
url: HttpUrl = Field(..., description="URL to the original Reddit post")
|
| 29 |
+
score: int = Field(..., description="Reddit score (upvotes minus downvotes)")
|
| 30 |
+
created_utc: float = Field(..., description="Post creation time (Unix seconds)")
|
| 31 |
+
post_id: str = Field(..., description="Reddit post ID")
|
| 32 |
+
flair: Optional[str] = Field(None, description="Post flair, if present")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class PainPointDecision(BaseModel):
|
| 36 |
+
decision: Literal["YES", "NO"]
|
| 37 |
+
reason: Optional[str] = None
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class PainPointGenerated(BaseModel):
|
| 41 |
+
title: str
|
| 42 |
+
summary: str
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def _fetch_subreddit_new(subreddit: str, limit: int) -> list[dict]:
|
| 46 |
+
"""Fetch 'new' posts; fallback to RSS if JSON is blocked."""
|
| 47 |
+
json_url = f"https://www.reddit.com/r/{subreddit}/new.json?limit={limit}"
|
| 48 |
+
headers = {
|
| 49 |
+
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) FastMCP-RedditPainPoints/1.0 (+https://example.com)",
|
| 50 |
+
"Accept": "application/json, text/plain, */*",
|
| 51 |
+
"Accept-Language": "en-US,en;q=0.9",
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
with httpx.Client(timeout=httpx.Timeout(15.0), headers=headers) as client:
|
| 56 |
+
response = client.get(json_url, follow_redirects=True)
|
| 57 |
+
response.raise_for_status()
|
| 58 |
+
payload = response.json()
|
| 59 |
+
children = payload.get("data", {}).get("children", [])
|
| 60 |
+
print(f"Reddit fetch source: JSON API ({len(children)} items)")
|
| 61 |
+
return [child.get("data", {}) for child in children]
|
| 62 |
+
except Exception:
|
| 63 |
+
# RSS fallback
|
| 64 |
+
feed_url = f"https://www.reddit.com/r/{subreddit}/new/.rss"
|
| 65 |
+
feed = feedparser.parse(feed_url)
|
| 66 |
+
posts: list[dict] = []
|
| 67 |
+
for entry in feed.entries[:limit]:
|
| 68 |
+
# Attempt to extract id and score if present (RSS is limited)
|
| 69 |
+
link = entry.get("link") or ""
|
| 70 |
+
title = entry.get("title") or ""
|
| 71 |
+
# created: use published_parsed if available
|
| 72 |
+
created_utc = 0.0
|
| 73 |
+
if getattr(entry, "published_parsed", None):
|
| 74 |
+
try:
|
| 75 |
+
import calendar
|
| 76 |
+
|
| 77 |
+
created_utc = float(calendar.timegm(entry.published_parsed))
|
| 78 |
+
except Exception:
|
| 79 |
+
created_utc = 0.0
|
| 80 |
+
posts.append(
|
| 81 |
+
{
|
| 82 |
+
"title": title,
|
| 83 |
+
"selftext": "",
|
| 84 |
+
"score": 0,
|
| 85 |
+
"created_utc": created_utc,
|
| 86 |
+
"id": entry.get("id") or "",
|
| 87 |
+
"permalink": "",
|
| 88 |
+
"url": link,
|
| 89 |
+
"link_flair_text": None,
|
| 90 |
+
}
|
| 91 |
+
)
|
| 92 |
+
print(f"Reddit fetch source: RSS fallback ({len(posts)} items)")
|
| 93 |
+
return posts
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _get_mistral_client() -> Mistral:
|
| 97 |
+
api_key = os.environ.get("MISTRAL_API_KEY")
|
| 98 |
+
if not api_key:
|
| 99 |
+
raise RuntimeError("MISTRAL_API_KEY environment variable is required for AI-based extraction")
|
| 100 |
+
return Mistral(api_key=api_key)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def _ai_should_extract_painpoint(client: Mistral, title: str, selftext: str) -> bool:
|
| 104 |
+
"""Use Mistral structured output to decide if the post is a pain point."""
|
| 105 |
+
content = (
|
| 106 |
+
"You are a strict classifier deciding if a Reddit post describes a concrete pain point "
|
| 107 |
+
"about Mistral AI usage (APIs, models, SDKs, deployment, errors, performance, limitations).\n\n"
|
| 108 |
+
"Return JSON with decision YES/NO and a brief reason."
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
user_text = (
|
| 112 |
+
f"Title: {title}\n\n"
|
| 113 |
+
f"Body: {selftext or '(none)'}\n\n"
|
| 114 |
+
"Does this describe a real problem/pain point that warrants tracking?"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
resp = client.chat.parse(
|
| 118 |
+
model=MISTRAL_MODEL,
|
| 119 |
+
messages=[
|
| 120 |
+
{"role": "system", "content": content},
|
| 121 |
+
{"role": "user", "content": user_text},
|
| 122 |
+
],
|
| 123 |
+
response_format=PainPointDecision,
|
| 124 |
+
temperature=0,
|
| 125 |
+
max_tokens=64,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
parsed: PainPointDecision = resp.choices[0].message.parsed # type: ignore[attr-defined]
|
| 129 |
+
print(f"AI classify: {parsed.decision}")
|
| 130 |
+
return parsed.decision == "YES"
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def _ai_generate_title_summary(client: Mistral, title: str, selftext: str) -> PainPointGenerated:
|
| 134 |
+
"""Use Mistral structured output to produce a concise title and summary."""
|
| 135 |
+
content = (
|
| 136 |
+
"You generate a clear, concise pain point title and a one-sentence summary that captures the core issue.\n"
|
| 137 |
+
"Do not add links or metadata. Keep the summary <= 240 characters."
|
| 138 |
+
)
|
| 139 |
+
user_text = (
|
| 140 |
+
f"Original Title: {title}\n\n"
|
| 141 |
+
f"Body: {selftext or '(none)'}\n\n"
|
| 142 |
+
"If insufficient information, infer a short neutral title and a crisp summary."
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
resp = client.chat.parse(
|
| 146 |
+
model=MISTRAL_MODEL,
|
| 147 |
+
messages=[
|
| 148 |
+
{"role": "system", "content": content},
|
| 149 |
+
{"role": "user", "content": user_text},
|
| 150 |
+
],
|
| 151 |
+
response_format=PainPointGenerated,
|
| 152 |
+
temperature=0,
|
| 153 |
+
max_tokens=128,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
return resp.choices[0].message.parsed # type: ignore[return-value, attr-defined]
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
@mcp.tool(description="Scan r/MistralAI for problem-like posts using AI and return extracted pain points.")
|
| 160 |
+
def scan_mistralai_pain_points(limit: int = 50, min_score: int = 0) -> List[PainPoint]:
|
| 161 |
+
"""
|
| 162 |
+
Fetch recent posts from r/MistralAI and extract a list of pain points using a two-step AI flow:
|
| 163 |
+
1) Classify each post as a pain point (YES/NO)
|
| 164 |
+
2) If YES, generate a concise title and summary via structured outputs
|
| 165 |
+
|
| 166 |
+
- limit: Maximum posts to scan (<=100)
|
| 167 |
+
- min_score: Minimum Reddit score to include
|
| 168 |
+
|
| 169 |
+
Requires MISTRAL_API_KEY in environment.
|
| 170 |
+
"""
|
| 171 |
+
raw_posts = _fetch_subreddit_new("MistralAI", max(1, min(limit, 100)))
|
| 172 |
+
client = _get_mistral_client()
|
| 173 |
+
|
| 174 |
+
pain_points: List[PainPoint] = []
|
| 175 |
+
for post in raw_posts:
|
| 176 |
+
title = post.get("title", "").strip()
|
| 177 |
+
selftext = post.get("selftext", "") or ""
|
| 178 |
+
score = int(post.get("score", 0) or 0)
|
| 179 |
+
|
| 180 |
+
if score < min_score:
|
| 181 |
+
continue
|
| 182 |
+
|
| 183 |
+
try:
|
| 184 |
+
should = _ai_should_extract_painpoint(client, title, selftext)
|
| 185 |
+
except Exception:
|
| 186 |
+
# On AI failure, skip the post to avoid false positives
|
| 187 |
+
print("AI classify failed; skipping post")
|
| 188 |
+
continue
|
| 189 |
+
|
| 190 |
+
if not should:
|
| 191 |
+
continue
|
| 192 |
+
|
| 193 |
+
try:
|
| 194 |
+
gen = _ai_generate_title_summary(client, title, selftext)
|
| 195 |
+
ai_title = gen.title.strip()
|
| 196 |
+
ai_summary = gen.summary.strip()
|
| 197 |
+
except Exception:
|
| 198 |
+
# If generation fails, fall back to minimal safe defaults
|
| 199 |
+
print("AI generation failed; using fallback title/summary")
|
| 200 |
+
ai_title = title
|
| 201 |
+
ai_summary = (selftext or title)[:240]
|
| 202 |
+
|
| 203 |
+
permalink = post.get("permalink") or ""
|
| 204 |
+
full_url = f"https://www.reddit.com{permalink}" if permalink else post.get("url_overridden_by_dest") or post.get("url") or ""
|
| 205 |
+
|
| 206 |
+
pain_points.append(
|
| 207 |
+
PainPoint(
|
| 208 |
+
title=ai_title or title,
|
| 209 |
+
summary=ai_summary,
|
| 210 |
+
url=full_url,
|
| 211 |
+
score=score,
|
| 212 |
+
created_utc=float(post.get("created_utc", 0.0) or 0.0),
|
| 213 |
+
post_id=str(post.get("id", "")),
|
| 214 |
+
flair=post.get("link_flair_text"),
|
| 215 |
+
)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
print(f"Extraction complete: {len(pain_points)} pain points")
|
| 219 |
+
return pain_points
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
if __name__ == "__main__":
|
| 223 |
+
mcp.run(transport="http")
|
fastmcp.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "reddit-painpoints",
|
| 3 |
+
"description": "MCP server that monitors r/MistralAI and extracts community pain points with links",
|
| 4 |
+
"entrypoint": "server.py",
|
| 5 |
+
"transport": "streamable-http",
|
| 6 |
+
"http": {
|
| 7 |
+
"host": "0.0.0.0",
|
| 8 |
+
"port": 7860
|
| 9 |
+
}
|
| 10 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastmcp>=2.12.2
|
| 2 |
+
httpx>=0.27.0
|
| 3 |
+
pydantic>=2.7.0
|
| 4 |
+
mistralai>=1.5.0
|
| 5 |
+
feedparser>=6.0.11
|