File size: 3,648 Bytes
ae4e2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Model Loader
============
Responsible for loading and initializing models (Single Responsibility)
"""

import torch
from transformers import AutoModel, AutoTokenizer
from typing import Tuple
import logging

from app.models.phobert_model import PhoBERTFineTuned
from app.core.config import settings
from app.core.exceptions import ModelNotLoadedException


logger = logging.getLogger(__name__)


class ModelLoader:
    """
    Model loader service
    
    Responsibilities:
    - Load tokenizer
    - Load base model
    - Load fine-tuned weights
    - Initialize model on correct device
    """
    
    def __init__(self):
        self._model: PhoBERTFineTuned | None = None
        self._tokenizer: AutoTokenizer | None = None
        self._device: torch.device | None = None
    
    def load(self) -> Tuple[PhoBERTFineTuned, AutoTokenizer, torch.device]:
        """
        Load model, tokenizer, and set device
        
        Returns:
            model: Loaded model
            tokenizer: Loaded tokenizer
            device: Device (CPU/CUDA)
            
        Raises:
            ModelNotLoadedException: If loading fails
        """
        try:
            # Set device
            self._device = torch.device(settings.DEVICE)
            logger.info(f"Using device: {self._device}")
            
            # Load tokenizer
            logger.info(f"Loading tokenizer: {settings.MODEL_NAME}")
            self._tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME)
            
            # Load base model
            logger.info(f"Loading base model: {settings.MODEL_NAME}")
            phobert = AutoModel.from_pretrained(settings.MODEL_NAME)
            
            # Initialize fine-tuned model
            logger.info("Initializing fine-tuned model")
            self._model = PhoBERTFineTuned(
                embedding_model=phobert,
                hidden_dim=768,
                dropout=0.3,
                num_classes=2,
                num_layers_to_finetune=4,
                pooling='mean'
            )
            
            # Load weights
            logger.info(f"Loading weights from: {settings.MODEL_PATH}")
            state_dict = torch.load(
                settings.MODEL_PATH,
                map_location=self._device
            )
            self._model.load_state_dict(state_dict)
            
            # Move to device and set eval mode
            self._model = self._model.to(self._device)
            self._model.eval()
            
            logger.info("Model loaded successfully")
            
            return self._model, self._tokenizer, self._device
            
        except Exception as e:
            logger.error(f"Failed to load model: {str(e)}")
            raise ModelNotLoadedException()
    
    @property
    def model(self) -> PhoBERTFineTuned:
        """Get loaded model"""
        if self._model is None:
            raise ModelNotLoadedException()
        return self._model
    
    @property
    def tokenizer(self) -> AutoTokenizer:
        """Get loaded tokenizer"""
        if self._tokenizer is None:
            raise ModelNotLoadedException()
        return self._tokenizer
    
    @property
    def device(self) -> torch.device:
        """Get device"""
        if self._device is None:
            raise ModelNotLoadedException()
        return self._device
    
    def is_loaded(self) -> bool:
        """Check if model is loaded"""
        return all([
            self._model is not None,
            self._tokenizer is not None,
            self._device is not None
        ])


# Singleton instance
model_loader = ModelLoader()