import gradio as gr from ultralytics import YOLO from PIL import Image import numpy as np from typing import List, Tuple, Dict, Optional from huggingface_hub import InferenceClient # Load the trained model model = YOLO('best.pt') # Initialize state structure def init_user_state() -> Dict: """Initialize the user state dictionary.""" return { 'name': '', 'age': None, 'weight_lbs': None, 'height_cm': None, 'gender': '', 'activity_level': '', 'goal': '', 'calorie_target': None, 'cuisine_preference': '', 'detected_ingredients': [], 'ingredient_list_text': '' } # BMR & CALORIE CALCULATION def convert_height_to_cm(height_ft: Optional[float], height_in: Optional[float]) -> Optional[float]: """Convert feet and inches to centimeters.""" if height_ft is None or height_in is None: return None total_inches = (height_ft * 12) + height_in return total_inches * 2.54 def calculate_bmr(weight_kg: float, height_cm: float, age: int, gender: str) -> float: """ Calculate Basal Metabolic Rate using Mifflin-St Jeor Equation. BMR (Men) = 10 × weight(kg) + 6.25 × height(cm) - 5 × age(years) + 5 BMR (Women) = 10 × weight(kg) + 6.25 × height(cm) - 5 × age(years) - 161 """ base_bmr = (10 * weight_kg) + (6.25 * height_cm) - (5 * age) if gender.lower() == 'male': bmr = base_bmr + 5 else: # female bmr = base_bmr - 161 return bmr def get_activity_multiplier(activity_level: str) -> float: """Get activity multiplier based on activity level.""" multipliers = { 'Sedentary': 1.2, 'Light': 1.375, 'Moderate': 1.55, 'Active': 1.725, 'Very Active': 1.9 } return multipliers.get(activity_level, 1.2) def get_goal_adjustment(goal: str) -> int: """Get calorie adjustment based on goal.""" adjustments = { 'Cutting': -500, 'Maintain': 0, 'Bulking': +500, 'Custom': 0 # Will be handled separately } return adjustments.get(goal, 0) def calculate_calorie_target( weight_lbs: Optional[float], height_ft: Optional[float], height_in: Optional[float], age: Optional[int], gender: Optional[str], activity_level: Optional[str], goal: Optional[str], custom_calories: Optional[float], state: Dict ) -> Tuple[Dict, str]: """ Calculate daily calorie target based on user inputs. Updates state and returns formatted result. """ # Validate inputs if not all([weight_lbs, height_ft is not None, height_in is not None, age, gender, activity_level, goal]): return state, "**Please fill in all required fields.**" # Convert weight to kg weight_kg = weight_lbs * 0.453592 # Convert height to cm height_cm = convert_height_to_cm(height_ft, height_in) if height_cm is None: return state, "**Please enter valid height values.**" # Calculate BMR bmr = calculate_bmr(weight_kg, height_cm, age, gender) # Get activity multiplier activity_mult = get_activity_multiplier(activity_level) # Calculate TDEE (Total Daily Energy Expenditure) tdee = bmr * activity_mult # Apply goal adjustment if goal == 'Custom' and custom_calories is not None: calorie_target = custom_calories else: goal_adj = get_goal_adjustment(goal) calorie_target = tdee + goal_adj # Update state state['weight_lbs'] = weight_lbs state['height_cm'] = height_cm state['age'] = age state['gender'] = gender state['activity_level'] = activity_level state['goal'] = goal state['calorie_target'] = calorie_target # Format output result_text = f""" ## 📊 Your Daily Calorie Target **BMR (Basal Metabolic Rate):** {bmr:.0f} calories/day **Activity Level:** {activity_level} (×{activity_mult:.2f}) **TDEE (Total Daily Energy Expenditure):** {tdee:.0f} calories/day **Goal Adjustment:** {get_goal_adjustment(goal):+.0f} calories ### 🎯 **Daily Calorie Target: {calorie_target:.0f} calories** *This target is based on your profile and has been saved for recipe generation.* """ return state, result_text # INGREDIENT DETECTION def detect_ingredients(images: List, state: Dict) -> Tuple[Dict, List, str]: """ Process multiple images and return detected ingredients. Also updates the state with detected ingredients. Args: images: List of uploaded images (file paths) state: User state dictionary Returns: Tuple of (updated_state, processed_images, ingredient_list_text) """ if not images or len(images) == 0: return state, [], "**No images uploaded.**" processed_images = [] all_detected_items = set() # Process each uploaded image for image_file in images: if image_file is None: continue # Get file path (Remeber that Gradio returns file objects) image_path = image_file.name if hasattr(image_file, 'name') else image_file # Run prediction with the local settings results = model.predict(source=image_path, conf=0.7, iou=0.3, verbose=False) # Get the image with bounding boxes drawn result_image = results[0].plot() # Extract detected ingredients from this image for box in results[0].boxes: class_id = int(box.cls) class_name = model.names[class_id] all_detected_items.add(class_name) # Convert numpy array to PIL Image for display # YOLO returns BGR, convert to RGB if len(result_image.shape) == 3: result_image_rgb = result_image[..., ::-1] # BGR to RGB processed_images.append(Image.fromarray(result_image_rgb)) else: processed_images.append(Image.fromarray(result_image)) # formatted ingredient list if all_detected_items: ingredient_list = sorted(list(all_detected_items)) ingredient_list_text = "**Detected Ingredients:**\n\n" ingredient_list_text += "\n".join([f"• {item.capitalize()}" for item in ingredient_list]) ingredient_list_text += f"\n\n**Total unique items:** {len(ingredient_list)}" # Update state with detected ingredients for later use state['detected_ingredients'] = ingredient_list state['ingredient_list_text'] = ingredient_list_text else: ingredient_list_text = "**No ingredients detected.**\n\nTry adjusting the image quality or lighting." state['detected_ingredients'] = [] state['ingredient_list_text'] = ingredient_list_text return state, processed_images, ingredient_list_text # RECIPE GENERATION def generate_recipes(cuisine_preference: Optional[str], state: Dict) -> Tuple[Dict, str]: """ Generate recipes using LLM. All inputs are optional with smart defaults. """ # Make everything optional - use defaults if not provided cuisine_preference = cuisine_preference or "International" # Get user data with defaults calorie_target = state.get('calorie_target') if calorie_target: calorie_target = int(calorie_target) else: calorie_target = 2000 # Default calorie target goal = state.get('goal', 'Maintain') ingredients = state.get('detected_ingredients', []) # Build ingredient list or use default if ingredients: ingredient_list = ", ".join([item.capitalize() for item in ingredients]) ingredient_context = f"Use these available ingredients: {ingredient_list}. " else: ingredient_list = "common pantry items" ingredient_context = "Use common, readily available ingredients. " # Update state state['cuisine_preference'] = cuisine_preference # Map goal to dietary focus goal_descriptions = { 'Cutting': 'weight loss and calorie deficit', 'Maintain': 'maintaining current weight', 'Bulking': 'muscle gain with high protein', 'Custom': 'your custom calorie target' } goal_desc = goal_descriptions.get(goal, 'general health and nutrition') # Build flexible prompt based on available data prompt = f"""You are a professional nutritionist and chef. Create 3 distinct, detailed recipes that: 1. {ingredient_context} 2. Fit within a daily calorie target of approximately {calorie_target} calories per day 3. Match {cuisine_preference} cuisine style 4. Align with the goal of {goal_desc} For each recipe, provide: - Recipe name - Serving size - Estimated calories per serving - Complete ingredient list (you may suggest additional common pantry items if needed) - Step-by-step cooking instructions - Nutritional highlights relevant to the goal Format each recipe clearly with headers. Make the recipes practical, delicious, and suitable for home cooking.""" try: # Use Hugging Face Inference API import os # Try multiple ways to get the token hf_token = None # Method 1: Check HF_TOKEN environment variable (Hugging Face Spaces secret) hf_token = os.getenv("HF_TOKEN", None) # Method 2: Check HUGGING_FACE_HUB_TOKEN (alternative name) if not hf_token: hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN", None) # Method 3: Try to get from Hugging Face cache (for Spaces or logged-in users) if not hf_token: try: from huggingface_hub import HfFolder hf_token = HfFolder.get_token() except: pass # Initialize client with token if available, otherwise try without if hf_token: client = InferenceClient(token=hf_token) else: # Try without token client = InferenceClient() # Try multiple models that work on free tier #Try chat_completion first, then text_generation as fallback response = None last_error = None successful_model = None errors_log = [] # List of models to try - simpler models that work on free tier models_to_try = [ "microsoft/Phi-3-mini-4k-instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.2", "meta-llama/Llama-3.2-3B-Instruct", "google/flan-t5-xxl", # Simple text generation model ] for model_name in models_to_try: # Try chat_completion first try: messages = [ {"role": "system", "content": "You are a professional nutritionist and chef. Create detailed, practical recipes with clear formatting."}, {"role": "user", "content": prompt} ] response_obj = client.chat_completion( messages=messages, model=model_name, max_tokens=1500, temperature=0.7, ) # Extract response if hasattr(response_obj, 'choices') and len(response_obj.choices) > 0: if hasattr(response_obj.choices[0].message, 'content'): response = response_obj.choices[0].message.content else: response = str(response_obj.choices[0].message) elif isinstance(response_obj, dict) and 'choices' in response_obj: response = response_obj['choices'][0]['message']['content'] elif isinstance(response_obj, str): response = response_obj else: response = str(response_obj) if response and len(response.strip()) > 50: # Make sure we got a real response successful_model = f"{model_name} (chat_completion)" break except Exception as chat_error: errors_log.append(f"{model_name} (chat): {str(chat_error)[:80]}") # Try text_generation as fallback for this model try: response = client.text_generation( prompt, model=model_name, max_new_tokens=1500, temperature=0.7, ) if response and len(str(response).strip()) > 50: successful_model = f"{model_name} (text_generation)" break except Exception as text_error: errors_log.append(f"{model_name} (text): {str(text_error)[:80]}") last_error = text_error continue # If still no response, try one more fallback if not response: try: # Try a very simple model as last resort response = client.text_generation( prompt, model="gpt2", # Should be always available max_new_tokens=500, temperature=0.7, ) successful_model = "gpt2 (fallback)" except: pass # If all models failed, provide an error message if response is None: error_msg = f"** Failed to generate recipes.**\n\n" # Show last error details if last_error: error_msg += f"**Last error:** {str(last_error)[:200]}\n\n" # Show which models were tried if errors_log: error_msg += "**Models tried:**\n" for err in errors_log[:3]: # Show first 3 errors error_msg += f"- {err}\n" error_msg += "\n" if not hf_token: error_msg += """**💡 Setup Required if dulplicated:** **For Hugging Face Spaces:** Go to your Space Settings Scroll to "Repository secrets" Click **"New secret"** Value: Your Hugging Face token Click **"Add secret"** and your Space will rebuild automatically **For Local Development:** Set the `HF_TOKEN` environment variable with your Hugging Face token. Once the token is set, try generating recipes again!""" else: error_msg += """**Possible issues:** - The models may require special access (some models need approval on Hugging Face) - Your token may not have access to these models (free tier has limitations) - Models might be routed to external providers that aren't available - Network connectivity issues """ return state, error_msg # Extract text if response is a formatted object if hasattr(response, 'generated_text'): response_text = response.generated_text elif isinstance(response, str): response_text = response else: response_text = str(response) # Build profile summary (only show if data exists) profile_parts = [] if state.get('calorie_target'): profile_parts.append(f"- Daily Calorie Target: {calorie_target} calories") if state.get('goal'): profile_parts.append(f"- Goal: {goal}") if ingredients: profile_parts.append(f"- Available Ingredients: {ingredient_list}") profile_summary = "\n".join(profile_parts) if profile_parts else "- Using default settings (2000 calories, general recipes)" recipes_text = f"""## 🍳 Recipe Suggestions for {cuisine_preference} Cuisine **Settings Used:** {profile_summary} --- {response_text} --- *Recipes generated using AI. {"Based on your profile and ingredients." if (state.get('calorie_target') or ingredients) else "Feel free to customize your profile and scan ingredients for more personalized results!"}*""" return state, recipes_text except Exception as e: error_msg = f"""** Error generating recipes.** Please try again. If the issue persists, you may need to: 1. Check your internet connection 2. Ensure you have a Hugging Face API token set (if required) 3. Try a different cuisine preference Error details: {str(e)}""" return state, error_msg # GRADIO INTERFACE # Custom CSS -NOTE: Lets add emojis to the Responses and buttons to add more colors without offending the design. custom_css = """ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .main-header { text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px; } .description-box { background: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #667eea; margin-bottom: 20px; color: #000000 !important; } .description-box * { color: #000000 !important; } .ingredient-list { background: #ffffff; padding: 20px; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1); min-height: 200px; color: #000000 !important; } .ingredient-list * { color: #000000 !important; } .calorie-result { background: #e8f5e9; padding: 20px; border-radius: 8px; border-left: 4px solid #4caf50; margin-top: 20px; color: #000000 !important; } .calorie-result * { color: #000000 !important; } """ # Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: # Header - Changed again for CTP showcase. gr.Markdown( """ # 🥗 Forked Nutrition Your AI-powered kitchen companion: Scan ingredients, calculate calories, and generate personalized recipes! """, elem_classes=["main-header"] ) # Initialize state user_state = gr.State(value=init_user_state) # Tab structure with gr.Tabs() as tabs: # TAB 1: USER PROFILE & GOALS with gr.Tab("👤 User Profile & Goals"): gr.Markdown( """
📋 Set up your profile:
Enter your personal information and fitness goals to calculate your daily calorie target. This will be used to generate personalized recipes.
""" ) with gr.Row(): with gr.Column(scale=1): name_input = gr.Textbox( label="Name", placeholder="Enter your name", value="" ) with gr.Row(): age_input = gr.Number( label="Age", minimum=1, maximum=120, value=None, precision=0 ) gender_input = gr.Dropdown( label="Gender", choices=["Male", "Female"], value=None ) with gr.Row(): weight_input = gr.Number( label="Weight (lbs)", minimum=1, maximum=1000, value=None, precision=1 ) with gr.Row(): height_ft_input = gr.Number( label="Height (feet)", minimum=1, maximum=8, value=None, precision=0 ) height_in_input = gr.Number( label="Height (inches)", minimum=0, maximum=11, value=None, precision=0 ) activity_input = gr.Dropdown( label="Activity Level", choices=["Sedentary", "Light", "Moderate", "Active", "Very Active"], value=None, info="Sedentary: Little/no exercise | Light: Light exercise 1-3 days/week | Moderate: Moderate exercise 3-5 days/week | Active: Hard exercise 6-7 days/week | Very Active: Very hard exercise, physical job" ) goal_input = gr.Radio( label="Goal", choices=["Cutting", "Maintain", "Bulking", "Custom"], value=None ) custom_calories_input = gr.Number( label="Custom Calorie Target", minimum=800, maximum=5000, value=None, precision=0, visible=False, info="Enter your desired daily calorie target" ) calculate_btn = gr.Button( "📊 Calculate Calorie Target", variant="primary", size="lg" ) with gr.Column(scale=1): calorie_output = gr.Markdown( label="Calorie Calculation Result", elem_classes=["calorie-result"] ) # Show/hide custom calories input based on goal selection def toggle_custom_calories(goal): if goal == "Custom": return gr.update(visible=True) else: # Reset value to None when hiding to prevent validation errors return gr.update(visible=False, value=None) goal_input.change( fn=toggle_custom_calories, inputs=goal_input, outputs=custom_calories_input ) # Calculate calories calculate_btn.click( fn=calculate_calorie_target, inputs=[ weight_input, height_ft_input, height_in_input, age_input, gender_input, activity_input, goal_input, custom_calories_input, user_state ], outputs=[user_state, calorie_output] ) # Update name in state when changed name_input.change( fn=lambda name, state: ({**state, 'name': name}, state), inputs=[name_input, user_state], outputs=[user_state, user_state] ) # TAB 2: INGREDIENT SCANNER with gr.Tab("📸 Ingredient Scanner"): gr.Markdown( """
📸 How to use:
1. Click "Upload Images" or drag and drop multiple photos
2. Wait for the AI to analyze your ingredients
3. View all processed images with detection boxes and the complete ingredient list
4. Detected ingredients will be saved for recipe generation
""" ) with gr.Row(): with gr.Column(scale=1): image_input = gr.File( file_count="multiple", file_types=["image"], label="📁 Upload Images", height=200 ) process_btn = gr.Button( "🔍 Detect Ingredients", variant="primary", size="lg" ) gr.Markdown("---") ingredient_output = gr.Markdown( label="📋 Detected Ingredients", elem_classes=["ingredient-list"] ) with gr.Column(scale=2): gallery_output = gr.Gallery( label="🖼️ Processed Images with Detections", show_label=True, elem_id="gallery", columns=2, rows=2, height="auto", allow_preview=True, preview=True ) # Process images when button is clicked process_btn.click( fn=detect_ingredients, inputs=[image_input, user_state], outputs=[user_state, gallery_output, ingredient_output] ) # Also process when images are uploaded (auto-detect) image_input.upload( fn=detect_ingredients, inputs=[image_input, user_state], outputs=[user_state, gallery_output, ingredient_output] ) # TAB 3: RECIPE GENERATOR with gr.Tab("🍳 Recipe Generator"): gr.Markdown( """
🍳 Generate personalized recipes:
Generate AI-powered recipes! You can customize with your calorie target, fitness goals, and detected ingredients, or simply select a cuisine preference to get started right away. Everything is optional!
""" ) with gr.Row(): with gr.Column(scale=1): cuisine_input = gr.Dropdown( label="Cuisine Preference", choices=["International", "Mexican", "Chinese", "American", "Italian", "Indian", "Japanese", "Mediterranean", "Thai", "French"], value="International", info="Select your preferred cuisine style (optional, defaults to International)" ) generate_btn = gr.Button( "✨ Generate Recipes", variant="primary", size="lg" ) gr.Markdown("---") with gr.Column(scale=2): recipe_output = gr.Markdown( label="Generated Recipes", elem_classes=["ingredient-list"] ) # Generate recipes generate_btn.click( fn=generate_recipes, inputs=[cuisine_input, user_state], outputs=[user_state, recipe_output] ) gr.Markdown( """ ---
Powered by YOLOv11 & AI Recipe Generation | Your smart kitchen assistant!
""" ) # Launch the app if __name__ == "__main__": demo.launch()